Types as Weak ω -Groupoids

Brandon Shapiro

bts82@cornell.edu

School and Workshop on Univalent Mathematics

• What information does a type in our theory carry?

- What information does a type in our theory carry?
- Elements: a, b : A

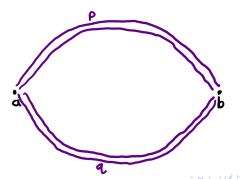
L

b

• What information does a type in our theory carry?

• Elements: a, b : A

• Equalities: $p, q : a =_A b$

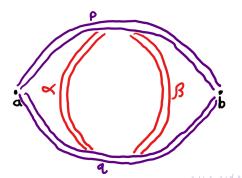


• What information does a type in our theory carry?

• Elements: a, b : A

• Equalities: $p, q : a =_A b$

• More equalities: $\alpha, \beta : p =_{a=b} q$



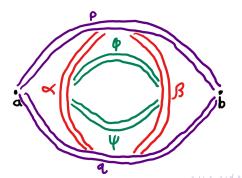
• What information does a type in our theory carry?

• Elements: a, b : A

• Equalities: $p, q : a =_A b$

• More equalities: $\alpha, \beta : p =_{a=b} q$

• And so on: $\phi, \psi: \alpha =_{p=q} \beta$



• What information does a type in our theory carry?

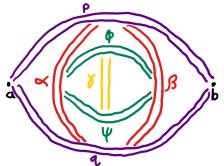
Elements: a, b : A

• Equalities: $p, q : a =_A b$

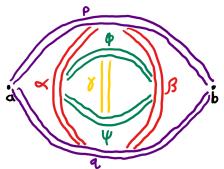
• More equalities: $\alpha, \beta : p =_{a=b} q$

 $\bullet \ \ {\rm And \ so \ on:} \ \ \phi, \psi: \alpha =_{{\pmb p}={\pmb q}} \beta$

 $\bullet \ \, \text{And so forth:} \,\, \gamma : \phi =_{\alpha = \beta} \psi$



- What information does a type in our theory carry?
- Elements: a, b : A
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi, \psi : \alpha =_{p=q} \beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- With path induction:



• What information does a type in our theory carry?

• Elements: a, b : A

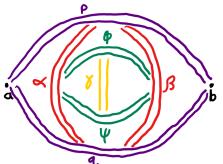
• Equalities: $p, q : a =_A b$

• More equalities: $\alpha, \beta : p =_{a=b} q$

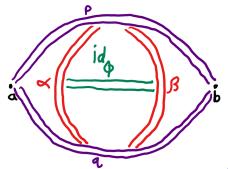
 $\bullet \ \ \mathsf{And} \ \mathsf{so} \ \mathsf{on} \colon \ \phi, \psi : \alpha =_{\mathbf{p} = \mathbf{q}} \beta$

 $\bullet \ \, \text{And so forth:} \,\, \gamma : \phi =_{\alpha = \beta} \psi$

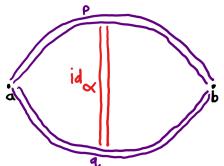
• With path induction: To prove for all γ , it suffices to assume...



- What information does a type in our theory carry?
- Elements: a, b : A
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi, \psi : \alpha =_{p=q} \beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- ullet With path induction: To prove for all γ , it suffices to assume...



- What information does a type in our theory carry?
- Elements: a, b : A
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi, \psi : \alpha =_{p=q} \beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- ullet With path induction: To prove for all γ , it suffices to assume...

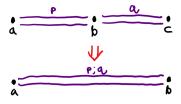


- What information does a type in our theory carry?
- Elements: a, b : A
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi, \psi : \alpha =_{p=q} \beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- ullet With path induction: To prove for all γ , it suffices to assume...

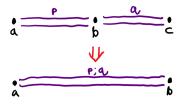
- What information does a type in our theory carry?
- Elements: a, b : A
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi, \psi : \alpha =_{p=q} \beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- ullet With path induction: To prove for all γ , it suffices to assume...

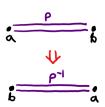
• Path induction gives us nice things:

- Path induction gives us nice things:
- Composition.

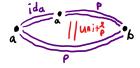


- Path induction gives us nice things:
- Composition. Symmetry.

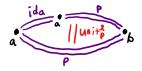


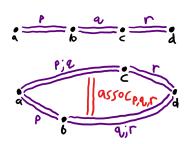


- Path induction gives us nice things:
- Composition. Symmetry.
- Units.

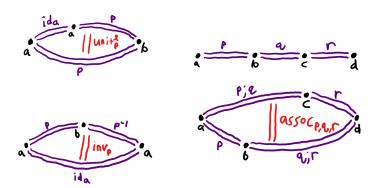


- Path induction gives us nice things:
- Composition. Symmetry.
- Units. Associativity.

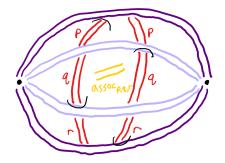




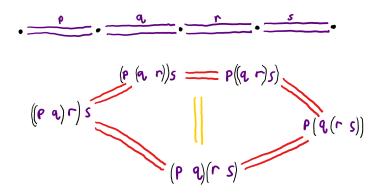
- Path induction gives us nice things:
- Composition. Symmetry.
- Units. Associativity. Inverses.



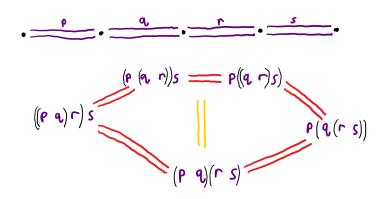
- Path induction gives us nice things:
- Composition. Symmetry.
- Units. Associativity. Inverses.
- At every level, but only up to higher cells.



- Path induction gives us nice things:
- Composition. Symmetry.
- Units. Associativity. Inverses.
- At every level, but only up to higher cells.
- Higher order properties...

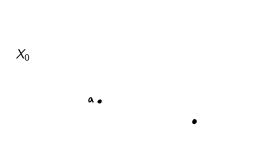


- Path induction gives us nice things:
- Composition. Symmetry.
- Units. Associativity. Inverses.
- At every level, but only up to higher cells.
- Higher order properties... What is this structure?



• Sets have objects in X_0 (like a, b : A)

• Sets have objects in X_0 (like a, b : A)



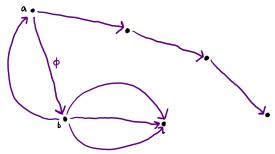
- Sets have objects in X_0 (like a, b : A)
- Graphs are sets with arrows in X_1 (like $\phi : a =_A b$)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$

٥.

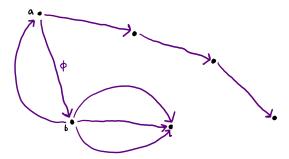
- Sets have objects in X_0 (like a, b : A)
- Graphs are sets with arrows in X_1 (like ϕ : $a =_A b$)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



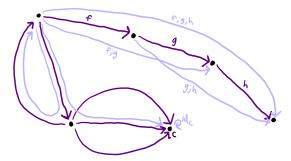
- Sets have objects in X_0 (like a, b : A)
- Graphs are sets with arrows in X_1 (like ϕ : $a =_A b$)
- Categories are graphs with composition, units, associativity (strict)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



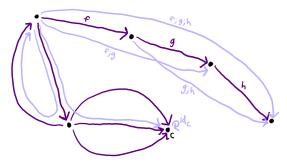
- Sets have objects in X_0 (like a, b : A)
- Graphs are sets with arrows in X_1 (like ϕ : $a =_A b$)
- Categories are graphs with composition, units, associativity (strict)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



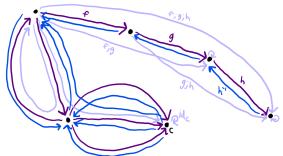
- Sets have objects in X_0 (like a, b : A)
- Graphs are sets with arrows in X_1 (like $\phi : a =_A b$)
- Categories are graphs with composition, units, associativity (strict)
- Groupoids are categories with inverses (strict)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



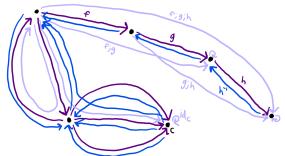
- Sets have objects in X_0 (like a, b : A)
- Graphs are sets with arrows in X_1 (like $\phi : a =_A b$)
- Categories are graphs with composition, units, associativity (strict)
- Groupoids are categories with inverses (strict)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



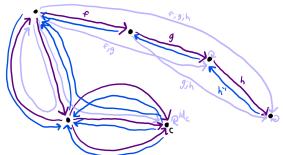
- 0-Graphs have objects in X_0
- Graphs are sets with arrows in X_1 (like ϕ : $a =_A b$)
- Categories are graphs with composition, units, associativity (strict)
- Groupoids are categories with inverses (strict)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



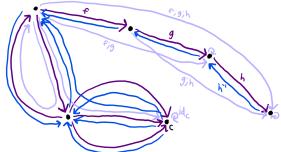
- 0-Graphs have objects in X_0
- 1-Graphs are 0-graphs with arrows in X_1
- Categories are graphs with composition, units, associativity (strict)
- Groupoids are categories with inverses (strict)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



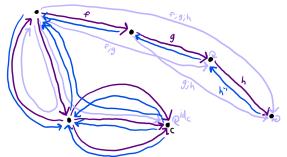
- 0-Graphs have objects in X_0
- 1-Graphs are 0-graphs with arrows in X_1
- 1-Categories are 1-graphs with composition, units, associativity
- Groupoids are categories with inverses (strict)

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



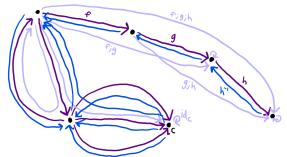
- 0-Graphs have objects in X_0
- 1-Graphs are 0-graphs with arrows in X_1
- 1-Categories are 1-graphs with composition, units, associativity
- 1-Groupoids are 1-categories with inverses

$$X_0 \xleftarrow{s} X_1$$



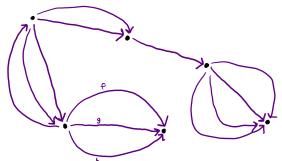
- 1-Graphs have X_0 , arrows in X_1
- 1-Graphs are 0-graphs with arrows in X_1
- 1-Categories are 1-graphs with composition, units, associativity
- 1-Groupoids are 1-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



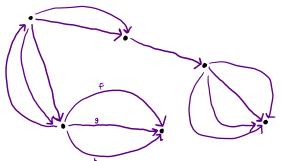
- 1-Graphs have X_0 , arrows in X_1
- 1-Graphs are 0-graphs with arrows in X_1
- 1-Categories are 1-graphs with composition, units, associativity
- 1-Groupoids are 1-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1$$



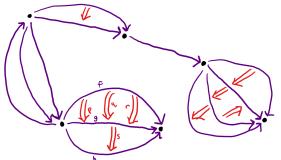
- 1-Graphs have X_0 , arrows in X_1
- 2-Graphs are 1-graphs with arrows in X_2
- 1-Categories are 1-graphs with composition, units, associativity
- 1-Groupoids are 1-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2$$



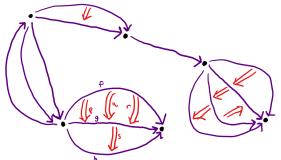
- 1-Graphs have X_0 , arrows in X_1
- 2-Graphs are 1-graphs with arrows in X_2
- 1-Categories are 1-graphs with composition, units, associativity
- 1-Groupoids are 1-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2$$



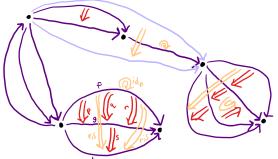
- 1-Graphs have X_0 , arrows in X_1
- 2-Graphs are 1-graphs with arrows in X_2
- 2-Categories are 2-graphs with composition, units, associativity
- 1-Groupoids are 1-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2$$



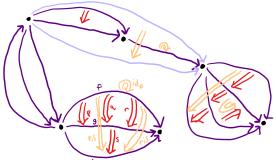
- 1-Graphs have X_0 , arrows in X_1
- 2-Graphs are 1-graphs with arrows in X_2
- 2-Categories are 2-graphs with composition, units, associativity
- 1-Groupoids are 1-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2$$



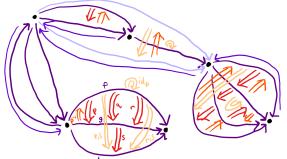
- 1-Graphs have X_0 , arrows in X_1
- 2-Graphs are 1-graphs with arrows in X_2
- 2-Categories are 2-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2$$



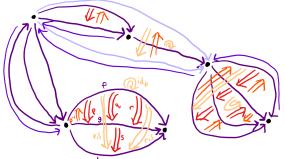
- 1-Graphs have X_0 , arrows in X_1
- 2-Graphs are 1-graphs with arrows in X_2
- 2-Categories are 2-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2$$



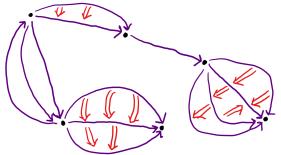
- 2-Graphs have X_0 , X_1 , arrows in X_2
- 2-Graphs are 1-graphs with arrows in X_2
- 2-Categories are 2-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2$$



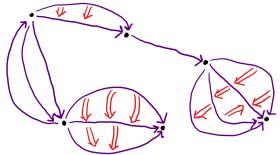
- 2-Graphs have X_0 , X_1 , arrows in X_2
- 2-Graphs are 1-graphs with arrows in X_2
- 2-Categories are 2-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2$$



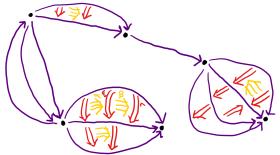
- 2-Graphs have X_0 , X_1 , arrows in X_2
- 3-Graphs are 2-graphs with arrows in X_3
- 2-Categories are 2-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3$$



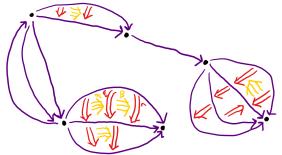
- 2-Graphs have X_0 , X_1 , arrows in X_2
- 3-Graphs are 2-graphs with arrows in X_3
- 2-Categories are 2-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3$$



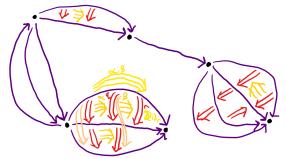
- 2-Graphs have X_0 , X_1 , arrows in X_2
- 3-Graphs are 2-graphs with arrows in X_3
- 3-Categories are 3-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3$$



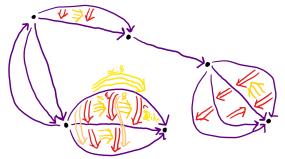
- 2-Graphs have X_0 , X_1 , arrows in X_2
- 3-Graphs are 2-graphs with arrows in X_3
- 3-Categories are 3-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3$$



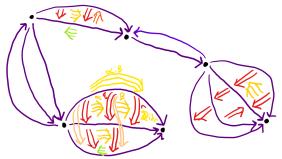
- 2-Graphs have X_0 , X_1 , arrows in X_2
- 3-Graphs are 2-graphs with arrows in X_3
- 3-Categories are 3-graphs with composition, units, associativity
- 3-Groupoids are 3-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3$$



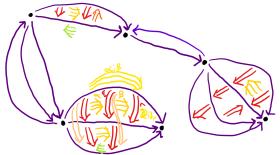
- 2-Graphs have X_0 , X_1 , arrows in X_2
- 3-Graphs are 2-graphs with arrows in X_3
- 3-Categories are 3-graphs with composition, units, associativity
- 3-Groupoids are 3-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3$$



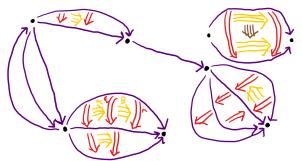
- *n*-Graphs have X_0, \dots, X_{n-1} , arrows in X_n
- 3-Graphs are 2-graphs with arrows in X_3
- 3-Categories are 3-graphs with composition, units, associativity
- 3-Groupoids are 3-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots \stackrel{s}{\longleftarrow} X_n$$



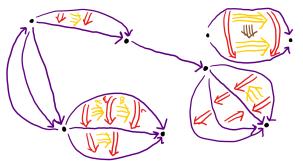
- *n*-Graphs have X_0, \dots, X_{n-1} , arrows in X_n
- 3-Graphs are 2-graphs with arrows in X_3
- 3-Categories are 3-graphs with composition, units, associativity
- 3-Groupoids are 3-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3 \xleftarrow{s} \cdots \xleftarrow{s} X_n$$



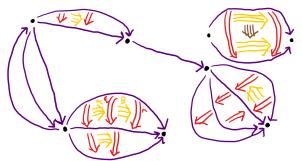
- n-Graphs have X_0, \dots, X_{n-1} , arrows in X_n
- (n+1)-Graphs are *n*-graphs with arrows in X_{n+1}
- 3-Categories are 3-graphs with composition, units, associativity
- 3-Groupoids are 3-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3 \xleftarrow{s} \cdots \xleftarrow{s} X_n \xleftarrow{s} X_{n+1}$$



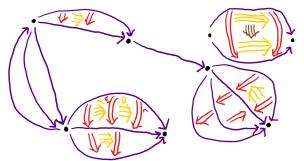
- n-Graphs have X_0, \dots, X_{n-1} , arrows in X_n
- (n+1)-Graphs are *n*-graphs with arrows in X_{n+1}
- *n*-Categories are *n*-graphs with composition, units, associativity
- 3-Groupoids are 3-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3 \xleftarrow{s} \cdots \xleftarrow{s} X_n$$



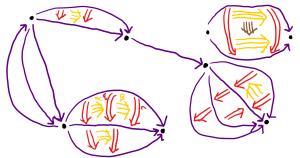
- n-Graphs have X_0, \dots, X_{n-1} , arrows in X_n
- (n+1)-Graphs are *n*-graphs with arrows in X_{n+1}
- *n*-Categories are *n*-graphs with composition, units, associativity
- n-Groupoids are n-categories with inverses

$$X_0 \xleftarrow{s} X_1 \xleftarrow{s} X_2 \xleftarrow{s} X_3 \xleftarrow{s} \cdots \xleftarrow{s} X_n$$



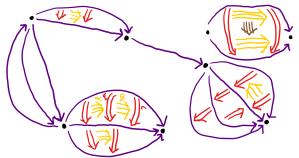
- ω -Graphs have X_0 , X_1 , X_2 , \cdots
- (n+1)-Graphs are *n*-graphs with arrows in X_{n+1}
- *n*-Categories are *n*-graphs with composition, units, associativity
- *n*-Groupoids are *n*-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots \stackrel{s}{\longleftarrow} X_n \stackrel{s}{\longleftarrow} \cdots$$



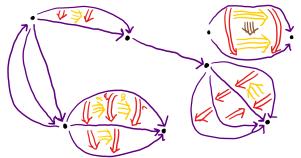
- ω -Graphs have X_0 , X_1 , X_2 , \cdots
- ω -Graphs are called globular sets, arrows in X_n are n-cells
- *n*-Categories are *n*-graphs with composition, units, associativity
- n-Groupoids are n-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots \stackrel{s}{\longleftarrow} X_n \stackrel{s}{\longleftarrow} \cdots$$



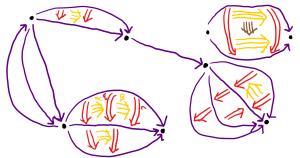
- ω -Graphs have X_0 , X_1 , X_2 , \cdots
- ω -Graphs are called globular sets, arrows in X_n are n-cells
- ω -Categories are ω -graphs with composition, units, associativity
- *n*-Groupoids are *n*-categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots \stackrel{s}{\longleftarrow} X_n \stackrel{s}{\longleftarrow} \cdots$$



- ω -Graphs have X_0, X_1, X_2, \cdots
- ω -Graphs are called globular sets, arrows in X_n are n-cells
- ω -Categories are ω -graphs with composition, units, associativity
- ω -Groupoids are ω -categories with inverses

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots \stackrel{s}{\longleftarrow} X_n \stackrel{s}{\longleftarrow} \cdots$$



 \bullet Let X be a globular set

 \bullet Let X be a globular set

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

Let X be a globular set

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

• What should we be able to compose, and into what?

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 0

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 0

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

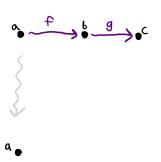
- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 0

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1

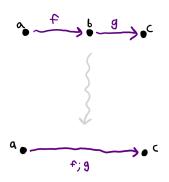
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1



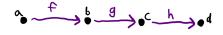
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1



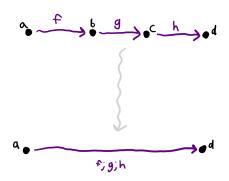
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1



$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1

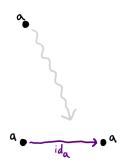


$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1

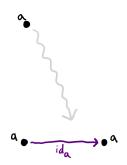
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1



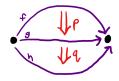
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



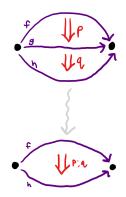
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



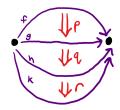
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



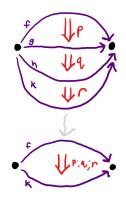
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



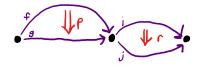
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



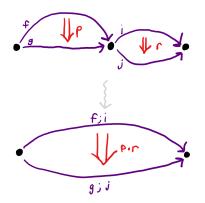
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



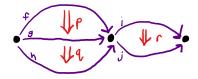
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



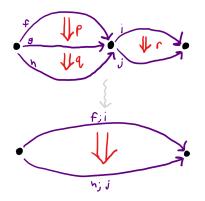
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



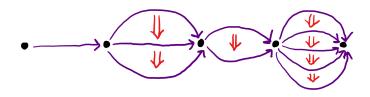
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

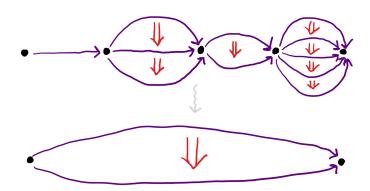
- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



ullet Let X be a globular set

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2

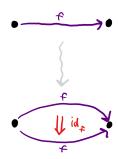


$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2

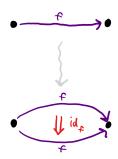
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2



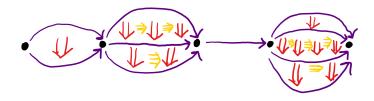
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 3



$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

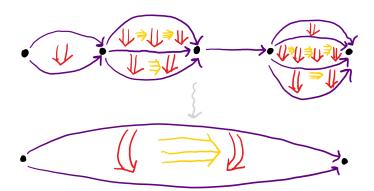
- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 3



ullet Let X be a globular set

$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

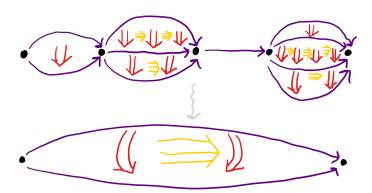
- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 3



ullet Let X be a globular set

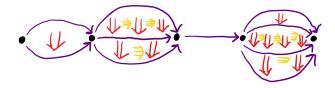
$$X_0 \stackrel{s}{\longleftarrow} X_1 \stackrel{s}{\longleftarrow} X_2 \stackrel{s}{\longleftarrow} X_3 \stackrel{s}{\longleftarrow} \cdots$$

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension n

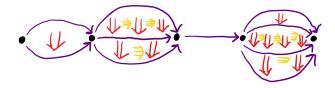


• For each pasting diagram shape *D*,

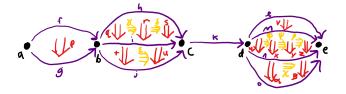
• For each pasting diagram shape *D*,



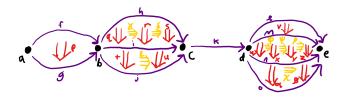
• For each pasting diagram shape D, $Hom(D, A) := \{ diagrams of shape <math>D \text{ in } A \}$



• For each pasting diagram shape D, $Hom(D, A) := \{ diagrams of shape <math>D \text{ in } A \}$



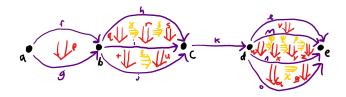
- For each pasting diagram shape D, $Hom(D, A) := \{ diagrams of shape D \text{ in } A \}$
- A strict ω -category is a globular set A...



For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$



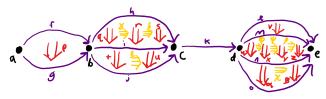
For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

...with composition maps for all D:

$$comp_D: Hom(D,A) \rightarrow A_n$$



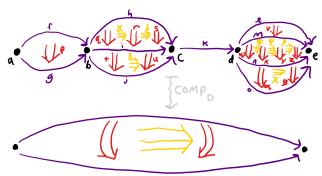
For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \xleftarrow{s} A_1 \xleftarrow{s} A_2 \xleftarrow{s} A_3 \xleftarrow{s} \cdots$$

...with composition maps for all D:

$$comp_D: Hom(D,A) \rightarrow A_n$$

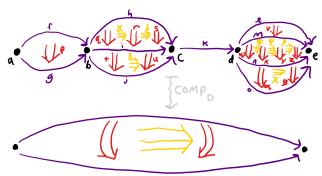


• For each pasting diagram shape D, $Hom(D, A) := \{ diagrams of shape D in A \}$

• A strict ω -category is a globular set A...

$$A_0 \xleftarrow{s} A_1 \xleftarrow{s} A_2 \xleftarrow{s} A_3 \xleftarrow{s} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$

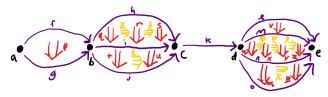


For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$

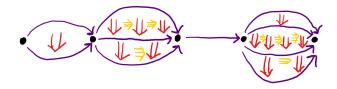


For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$

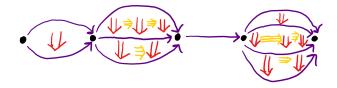


For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$

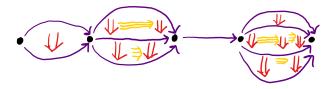


For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$

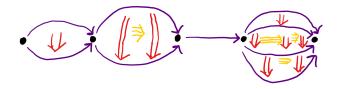


For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$

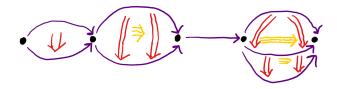


For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \xleftarrow{s} A_1 \xleftarrow{s} A_2 \xleftarrow{s} A_3 \xleftarrow{s} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$

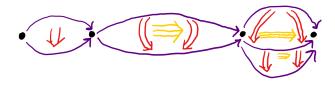


• For each pasting diagram shape D, $Hom(D, A) := \{ diagrams of shape D in A \}$

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$

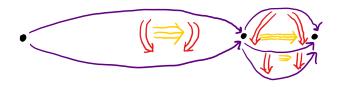


For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$



• For each pasting diagram shape D, $Hom(D, A) := \{ diagrams of shape D in A \}$

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

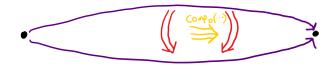
$$comp_D: Hom(D,A) \rightarrow A_n$$

• For each pasting diagram shape D, $Hom(D, A) := \{ diagrams of shape D in A \}$

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

$$comp_D: Hom(D,A) \rightarrow A_n$$



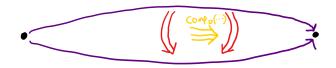
For each pasting diagram shape D,
 Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \stackrel{s}{\longleftarrow} A_1 \stackrel{s}{\longleftarrow} A_2 \stackrel{s}{\longleftarrow} A_3 \stackrel{s}{\longleftarrow} \cdots$$

...with associative composition maps for all D:

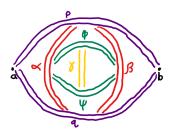
$$comp_D: Hom(D,A) \rightarrow A_n$$



All composition orders give the same result

$$A \xleftarrow{s} \sum_{a,b:A} a = b \xleftarrow{s} \sum_{a,b:A} \sum_{p,q:a=b} p = q \xleftarrow{s} \cdots$$

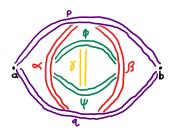
$$A \xleftarrow{s}_{t} \sum_{a,b:A} a = b \xleftarrow{s}_{t} \sum_{a,b:A} \sum_{p,q:a=b} p = q \xleftarrow{s}_{t} \cdots$$



• A type A forms a globular set:

$$A \xleftarrow{s} \sum_{a,b:A} a = b \xleftarrow{s} \sum_{a,b:A} \sum_{p,q:a=b} p = q \xleftarrow{s} \cdots$$

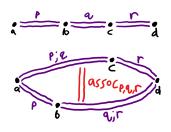
• A will have compositions, but not strict associativity



• A type A forms a globular set:

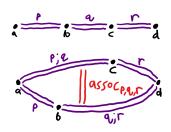
$$A \underset{t}{\varprojlim} \sum_{a,b:A} a = b \underset{t}{\varprojlim} \sum_{a,b:A} \sum_{p,q:a=b} p = q \underset{t}{\varprojlim} \cdots$$

• A will have compositions, but not strict associativity



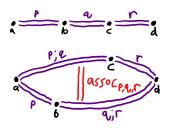
$$A \xleftarrow{s} \sum_{a,b:A} a = b \xleftarrow{s} \sum_{a,b:A} \sum_{p,q:a=b} p = q \xleftarrow{s} \cdots$$

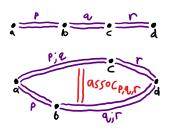
- A will have compositions, but not strict associativity
- Different composition orders for diagrams of *n*-cells are not the same



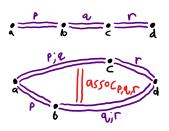
$$A \xleftarrow{s} \sum_{a,b:A} a = b \xleftarrow{s} \sum_{a,b:A} \sum_{p,q:a=b} p = q \xleftarrow{s} \cdots$$

- A will have compositions, but not strict associativity
- Different composition orders for diagrams of n-cells are not the same
- But they are related by (n+1)-cells

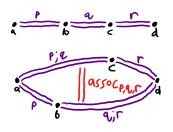




• How can we describe this weak associativity?



- How can we describe this weak associativity?
- What are "composition orders" ?

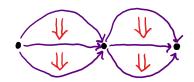


- How can we describe this weak associativity?
- What are "composition orders" ?

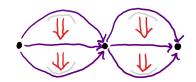
- How can we describe this weak associativity?
- What are "composition orders" ?

- How can we describe this weak associativity?
- What are "composition orders" ?

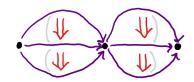
- How can we describe this weak associativity?
- What are "composition orders" ?



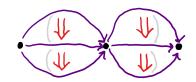
- How can we describe this weak associativity?
- What are "composition orders" ?



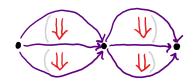
- How can we describe this weak associativity?
- What are "composition orders" ?



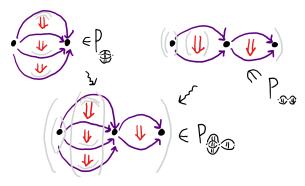
- How can we describe this weak associativity?
- What are "composition orders" ?
- A globular operad is a set P_D of "evaluation strategies" for each pasting diagram of shape D

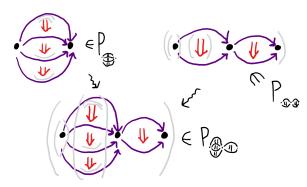


- How can we describe this weak associativity?
- What are "composition orders" ?
- A globular operad is a set P_D of "evaluation strategies" for each pasting diagram of shape D
- These strategies must allow "substitution"

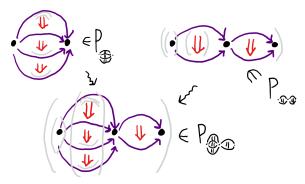


- How can we describe this weak associativity?
- What are "composition orders" ?
- A globular operad is a set P_D of "evaluation strategies" for each pasting diagram of shape D
- These strategies must allow "substitution"

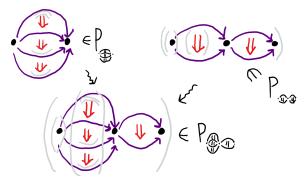




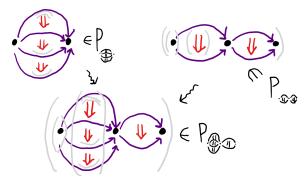
ullet Each evaluation strategy in P_D gives a different composition



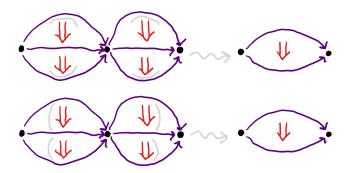
- ullet Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or P-algebra) is a globular set A with



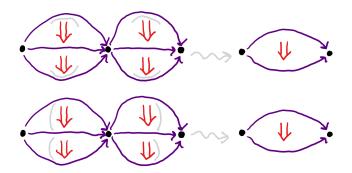
- ullet Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or P-algebra) is a globular set A with $comp_D: P_D \to Hom(D,A) \to A_n$ for each free pasting shape D, compatible with substitution



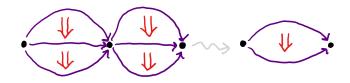
- ullet Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or P-algebra) is a globular set A with $comp_D: P_D \to Hom(D,A) \to A_n$ for each free pasting shape D, compatible with substitution



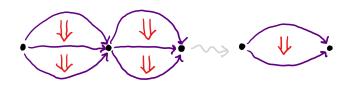
- ullet Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or P-algebra) is a globular set A with $comp_D: P_D \to Hom(D,A) \to A_n$ for each free pasting shape D, compatible with substitution
- If all $P_D = *$, there is only one composition for each D



- ullet Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or P-algebra) is a globular set A with $comp_D: P_D \to Hom(D,A) \to A_n$ for each free pasting shape D, compatible with substitution
- If all $P_D = *$, there is only one composition for each D

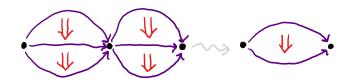


- ullet Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or P-algebra) is a globular set A with $comp_D: P_D \to Hom(D,A) \to A_n$ for each free pasting shape D, compatible with substitution
- If all $P_D = *$, there is only one composition for each D
- Then an ω_P -category is just a strict ω -category



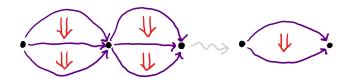
Contractibility

- An ω_P -category A has $comp_D: P_D \to Hom(D,A) \to A_n$
- If all $P_D=*$, then an ω_P -category is just a strict ω -category



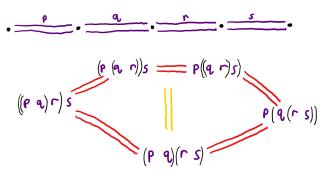
Contractibility

- An ω_P -category A has $comp_D: P_D \to Hom(D,A) \to A_n$
- If all $P_D = *$, then an ω_P -category is just a strict ω -category
- ullet Types have all properties of strict ω -categories up to higher cells



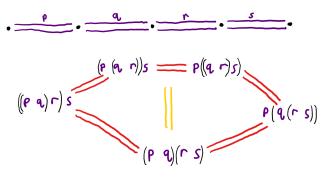
Contractibility

- An ω_P -category A has $comp_D: P_D \to Hom(D,A) \to A_n$
- If all $P_D=*$, then an ω_P -category is just a strict ω -category
- ullet Types have all properties of strict ω -categories up to higher cells



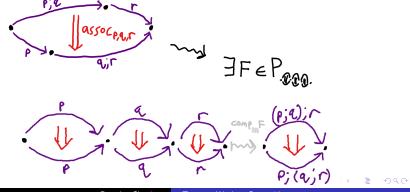
Contractibility

- An ω_P -category A has $comp_D: P_D \to Hom(D,A) \to A_n$
- If all $P_D = *$, then an ω_P -category is just a strict ω -category
- \bullet Types have all properties of strict $\omega\text{-categories}$ up to higher cells
- An operad P is contractible if this holds for all ω_P -categories

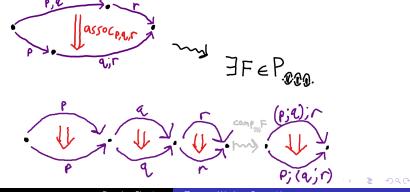


Contractibility

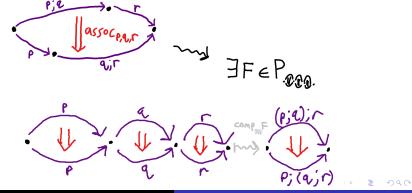
- An ω_P -category A has $comp_D: P_D \to Hom(D,A) \to A_n$
- If all $P_D = *$, then an ω_P -category is just a strict ω -category
- \bullet Types have all properties of strict $\omega\text{-categories}$ up to higher cells
- An operad P is contractible if this holds for all ω_P -categories



- ullet Types have all properties of strict ω -categories up to higher cells
- An operad P is contractible if this holds for all ω_P -categories



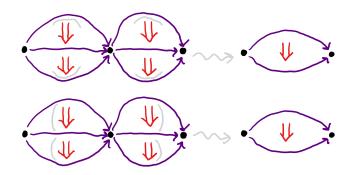
- ullet Types have all properties of strict ω -categories up to higher cells
- An operad P is contractible if this holds for all ω_P -categories
- P is normalized if $P_{\bullet} = *$



- ullet Types have all properties of strict ω -categories up to higher cells
- An operad P is contractible if this holds for all ω_P -categories
- P is normalized if $P_{\bullet} = *$

- ullet Types have all properties of strict ω -categories up to higher cells
- An operad P is contractible if this holds for all ω_P -categories
- P is normalized if $P_{\bullet} = *$
- A weak ω -category is an ω_P -category for P a normalized contractible globular operad

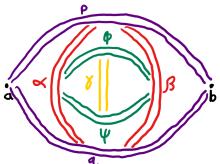
- ullet Types have all properties of strict ω -categories up to higher cells
- An operad P is contractible if this holds for all ω_P -categories
- P is normalized if $P_{\bullet} = *$
- A weak ω -category is an ω_P -category for P a normalized contractible globular operad



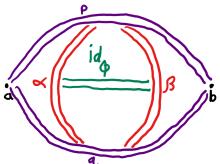
• A type A and its nested equalities form a globular set

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths

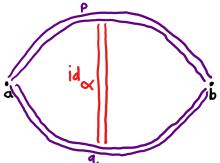
- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths



- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths



- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths



- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths
- ullet These compositions form a normalized globular operad $P_{\mathcal{A}}$

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths
- ullet These compositions form a normalized globular operad $P_{\mathcal{A}}$
- Path induction lets us show P_A is contractible

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths
- ullet These compositions form a normalized globular operad P_A
- Path induction lets us show P_A is contractible
- A thus forms a weak ω -category

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths
- ullet These compositions form a normalized globular operad $P_{\mathcal{A}}$
- Path induction lets us show P_A is contractible
- A thus forms a weak ω -category
- ullet Types also have weak inverses, so A is a weak ω -groupoid

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths
- ullet These compositions form a normalized globular operad $P_{\mathcal{A}}$
- Path induction lets us show P_A is contractible
- A thus forms a weak ω -category
- ullet Types also have weak inverses, so A is a weak ω -groupoid
- Is that all???

Fin

Thank you!

References

- Weak ω -groupoids in type theory: Benno van den Berg, Richard Garner. Types are Weak ω -Groupoids.
- More definitions of higher categories:
 Tom Leinster. Higher Operads, Higher Categories.