Types as Weak ω -Groupoids

Brandon Shapiro

bts82@cornell.edu

School and Workshop on Univalent Mathematics

- What information does a type in our theory carry?
- Elements: *a*, *b* : *A*
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi,\psi:\alpha=_{\pmb{\rho}=\pmb{q}}\beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- With path induction: To prove for all γ , it suffices to assume...

- What information does a type in our theory carry?
- Elements: *a*, *b* : *A*
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi,\psi:\alpha=_{\pmb{\rho}=\pmb{q}}\beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- With path induction: To prove for all γ , it suffices to assume...

- What information does a type in our theory carry?
- Elements: *a*, *b* : *A*
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi,\psi:\alpha=_{\pmb{\rho}=\pmb{q}}\beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- With path induction: To prove for all γ , it suffices to assume...

- What information does a type in our theory carry?
- Elements: *a*, *b* : *A*
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi,\psi:\alpha=_{\pmb{\rho}=\pmb{q}}\beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- With path induction: To prove for all γ , it suffices to assume...

- What information does a type in our theory carry?
- Elements: *a*, *b* : *A*
- Equalities: $p, q : a =_A b$
- More equalities: $\alpha, \beta : p =_{a=b} q$
- And so on: $\phi,\psi:\alpha=_{\pmb{\rho}=\pmb{q}}\beta$
- And so forth: $\gamma:\phi=_{\alpha=\beta}\psi$
- With path induction: To prove for all γ , it suffices to assume...

- Path induction gives us nice things:
- Composition. Symmetry.

→ < Ξ → <</p>

- Path induction gives us nice things:
- Composition. Symmetry.
- Units. Associativity. Inverses.

- Path induction gives us nice things:
- Composition. Symmetry.
- Units. Associativity. Inverses.
- At every level, but only up to higher cells.

- Path induction gives us nice things:
- Composition. Symmetry.
- Units. Associativity. Inverses.
- At every level, but only up to higher cells.
- Higher order properties... What is this structure?

- Sets have objects in X₀ (like a, b : A)
- Graphs are sets with arrows in X_1 (like $\phi : a =_A b$)
- Categories are graphs with composition, units, associativity (strict)
- Groupoids are categories with inverses (strict)

- 0-Graphs have objects in X₀
- 1-Graphs are 0-graphs with arrows in X₁
- 1-Categories are 1-graphs with composition, units, associativity
- 1-Groupoids are 1-categories with inverses

- 1-Graphs have X_0 , arrows in X_1
- 2-Graphs are 1-graphs with arrows in X₂
- 2-Categories are 2-graphs with composition, units, associativity
- 2-Groupoids are 2-categories with inverses

- 2-Graphs have X_0 , X_1 , arrows in X_2
- 3-Graphs are 2-graphs with arrows in X_3
- 3-Categories are 3-graphs with composition, units, associativity
- 3-Groupoids are 3-categories with inverses

$$X_0 \xleftarrow{s}_t X_1 \xleftarrow{s}_t X_2 \xleftarrow{s}_t X_3$$

- n-Graphs have X_0, \dots, X_{n-1} , arrows in X_n
- (n+1)-Graphs are *n*-graphs with arrows in X_{n+1}
- *n*-Categories are *n*-graphs with composition, units, associativity
- *n*-Groupoids are *n*-categories with inverses

$$X_0 \xleftarrow{s}{\leftarrow t} X_1 \xleftarrow{s}{\leftarrow t} X_2 \xleftarrow{s}{\leftarrow t} X_3 \xleftarrow{s}{\leftarrow t} \cdots \xleftarrow{s}{\leftarrow t} X_n$$

- ω -Graphs have X_0, X_1, X_2, \cdots
- ω -Graphs are called globular sets, arrows in X_n are *n*-cells
- ω -Categories are ω -graphs with composition, units, associativity
- ω -Groupoids are ω -categories with inverses

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 1

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 2

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension 3

- What should we be able to compose, and into what?
- Free unbiased pasting diagrams in dimension *n*

For each pasting diagram shape D,
Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

• For each pasting diagram shape *D*,

 $Hom(D, A) := \{ diagrams of shape D in A \}$

• A strict ω -category is a globular set A...

For each pasting diagram shape D,
Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

For each pasting diagram shape D,
Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

For each pasting diagram shape D,

 $Hom(D, A) := \{ diagrams of shape D in A \}$

• A strict ω -category is a globular set A...

• For each pasting diagram shape *D*,

 $Hom(D, A) := \{ diagrams of shape D in A \}$

• A strict ω -category is a globular set A...

For each pasting diagram shape D,
Hom(D, A) := {diagrams of shape D in A}

• A strict ω -category is a globular set A...

$$A_0 \xleftarrow{s}_t A_1 \xleftarrow{s}_t A_2 \xleftarrow{s}_t A_3 \xleftarrow{s}_t \cdots$$

...with associative composition maps for all *D*:
$$comp_D : Hom(D, A) \to A_n$$

All composition orders give the same result

• A type A forms a globular set:

$$A \xleftarrow[t]{s}_{a,b:A} a = b \xleftarrow[t]{s}_{a,b:A} \sum_{p,q:a=b} p = q \xleftarrow[t]{s}_{t} \cdots$$

• A will have compositions, but not strict associativity

• A type A forms a globular set:

$$A \xleftarrow[t]{s}_{a,b:A} a = b \xleftarrow[t]{s}_{a,b:A} \sum_{p,q:a=b} p = q \xleftarrow[t]{s}_{t} \cdots$$

- A will have compositions, but not strict associativity
- Different composition orders for diagrams of *n*-cells are not the same
- But they are related by (n+1)-cells

- How can we describe this weak associativity?
- What are "composition orders" ?

- How can we describe this weak associativity?
- What are "composition orders" ?
- A globular operad is a set *P*_D of "evaluation strategies" for each pasting diagram of shape *D*
- These strategies must allow "substitution"

- How can we describe this weak associativity?
- What are "composition orders" ?
- A globular operad is a set *P*_D of "evaluation strategies" for each pasting diagram of shape *D*
- These strategies must allow "substitution"

- Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or *P*-algebra) is a globular set *A* with $comp_D: P_D \rightarrow Hom(D, A) \rightarrow A_n$

for each free pasting shape D, compatible with substitution

- Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or *P*-algebra) is a globular set *A* with

 $comp_D: P_D \to Hom(D, A) \to A_n$

for each free pasting shape D, compatible with substitution

• If all $P_D = *$, there is only one composition for each D

- Each evaluation strategy in P_D gives a different composition
- An ω_P -category (or *P*-algebra) is a globular set *A* with

$comp_D: P_D \rightarrow Hom(D, A) \rightarrow A_n$

for each free pasting shape D, compatible with substitution

- If all $P_D = *$, there is only one composition for each D
- Then an ω_P -category is just a strict ω -category

Contractibility

- An ω_P -category A has $comp_D : P_D \to Hom(D, A) \to A_n$
- If all $P_D = *$, then an ω_P -category is just a strict ω -category
- Types have all properties of strict ω -categories up to higher cells

Contractibility

- An ω_P -category A has $comp_D : P_D \to Hom(D, A) \to A_n$
- If all $P_D = *$, then an ω_P -category is just a strict ω -category
- Types have all properties of strict ω -categories up to higher cells
- An operad P is contractible if this holds for all ω_P -categories

Weak ω -Categories

- Types have all properties of strict ω -categories up to higher cells
- An operad *P* is contractible if this holds for all ω_P -categories
- *P* is normalized if $P_{\bullet} = *$
- A weak ω-category is an ω_P-category for P a normalized contractible globular operad

Weak ω -Categories

- $\bullet\,$ Types have all properties of strict $\omega\text{-categories}$ up to higher cells
- An operad P is contractible if this holds for all ω_P -categories
- *P* is normalized if $P_{\bullet} = *$
- A weak ω-category is an ω_P-category for P a normalized contractible globular operad

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths

- A type A and its nested equalities form a globular set
- Path induction gives us all conceivable compositions built from reflexivity on identity paths
- These compositions form a normalized globular operad P_A
- Path induction lets us show P_A is contractible
- A thus forms a weak ω -category
- Types also have weak inverses, so A is a weak ω -groupoid
- Is that all???

Thank you!

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

æ

- Weak ω-groupoids in type theory: Benno van den Berg, Richard Garner. Types are Weak ω-Groupoids.
- More definitions of higher categories: Tom Leinster. Higher Operads, Higher Categories.