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@ What are cell structures?

@ How can they describe higher categories?
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Simplicial Sets

The simplex category A is the category of finite nonempty ordinals
and order preserving functions:
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d’ skips i, s’ repeats i, and these generate all maps in A

A simplicial set X is a functor A°P — Set:
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Simplicial Sets

The simplex category A is the category of finite nonempty ordinals
and order preserving functions:
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d’ skips i, s’ repeats i, and these generate all maps in A
There is a functor A — Top:
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where the maps act on the vertices as in A and extend linearly
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Simplicial Sets
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Idea:
%
X = Xo X1 Xo X3

{0-simplices}  {1-simplices} {2-simplices}  {3-simplices}

'face maps’ d;, 'degeneracy maps’ s;
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Simplicial Sets
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Example: Simplicial Circle O)\
b
X = Xo X1 X2
| | |
{b} {4, s0b}

{sb, sol, 510}

5, b e X
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Cubical Sets

The cube category [ is the category:
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with composition described via a functor [J — Top:
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where the maps are two face inclusions and one projection in each
dimension

A cubical set is a functor [J°°P — Set



Globular Sets

The glob(e) category G is the category:

~l |0l
~l |0l
~+l |0l

G:=0
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with Sos=toSandSot =

G can be realized in Top by lemons:
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but these don't capture the directionality

Shapiro Cell Shapes



Globular Sets

The glob(e) category G is the category:

~+1 |l
~+l |l
~+1 [l

G:=0

—_

with 505 =tosandsot=tot

Instead, think of globular cells as arrows between arrows (glob(e)s):

(-)i(-ﬁﬁi-@-i@
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Globular Sets

<->i<-ﬁ->i@-j@

A globular set X is a functor G°P — Set

S S

X=Xo ¢+ X1 ¢+ X2 ++ X3

%)

where sos=sotand tos=tot

"a collection of things in each dimension having source and target
with fixed boundary”
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Algebraic Composition

@ Where are the categories?
@ Things with source and target are ripe for composition!

@ How does this work with higher dimensions?
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Algebraic Composition

Dimension 1:

Like a category!

Identities added either as algebraic structure or to cell structure:

G' =0
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Algebraic Composition

Dimension 1:
fo. & fig
X—=y Sz x "2

Like a category!

Associativity can come in many forms:

strict weak wea ker
(fig)ih

T
LA N 27 NS

fi(g:h) fi(g:h) (g:h)

Similar choices for unit laws
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Algebraic Composition

Dimension 2:

Like a 2-category!

Associativity, identity conditions can similarly be strict or (various
forms of ) weak
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Algebraic Composition

Higher dimensions even more complicated, especially weak versions
This is all algebraic structure on an underlying globular set

A globular set with (some sort of) algebraic composition structure
is called (some version of ) an oco-category

(Often called an (oo, co0)-category)

An (oo, n)-category is an oco-category in which all cells of
dimension > n have (some kind of) inverses
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Algebraic Composition

A globular set with (some sort of) algebraic composition structure
is called (some version of ) an co-category

An (oo, n)-category is an oco-category in which all cells of
dimension > n have (some kind of) inverses

Example: Top

Topy = (some nice set of ) spaces . .

Y
Topy = continuous functions ° °

N "

AN
Top, = homotopies ° ( ) °
Topz = homotopies of homotopies ° 3 °

N
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Geometric Composition

Algebraic composition structure is tough to work with

What about simplicial sets?

f \C\
7' Y’ ~ A\_\%\XS
plus similar "filling" conditions in higher dimensions to give
associativity
These 'quasicategories’ are 'equivalent’ to (oo, 1)-categories

Simplicial sets can only model (oo, 1) in this way
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The End
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