Category Theory & Functional Data Abstraction

Brandon Shapiro

Math 100b

Brandon Shapiro [Category Theory](#page-28-0)

 299

Þ

B

Categories

- A category **C** is a collection of objects with arrows (often called morphisms) pointing between them
- Hom_c (X, Y) is the set of morphisms in **C** from X to Y
- \bullet If *f* ∈ *Hom*_{**C}(***X***,** *Y***) and** *q* **∈** *Hom***_{C}(***Y***,** *Z***), then there exists a</sub>**</sub> morphism $f \circ g$ in $Hom_{\mathbb{C}}(X, Z)$ (composition is associative)
- For every object *X* in **C**, there is an identity morphism $1_X \in Hom_{\mathbb{C}}(X, X)$ (*f* $\circ 1_X = f$ and $1_X \circ g = g$)

≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶

B

 QQ

Categories

- A category **C** is a collection of objects with arrows (often called morphisms) pointing between them
- Hom_c (X, Y) is the set of morphisms in **C** from X to Y
- **•** If *f* ∈ *Hom*_{**C}(***X***,** *Y***) and** *g* **∈** *Hom***_{c}(***Y***,** *Z***), then there exists a</sub>**</sub> morphism $f \circ g$ in $Hom_{\mathbb{C}}(X, Z)$ (composition is associative)
- For every object *X* in **C**, there is an identity morphism $1_X \in Hom_{\mathbf{C}}(X, X)$ (*f* ◦ $1_X = f$ and $1_X \circ g = g$)

イロト イ伊 トイヨ トイヨ トー

G.

 QQ

- **Set** is the category of all sets, with functions between sets as the morphisms
- All groups also form a category, **Grp**, with group homomorphisms as its morphisms
- **Ring** and *R*-**mod** for some ring *R* can be formed with ring and module homomorphisms as morphisms
- A subcategory of category **C** is a category with all of its objects and morphisms contained in **C**
- **•** Finite sets and the functions between them form a subcategory of **Set**, and abelian groups are a subcategory of **Grp**. Fields form a subcategory of the category of commutative rings, which is itself a subcategory of **Ring**

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

- **Set** is the category of all sets, with functions between sets as the morphisms
- All groups also form a category, **Grp**, with group homomorphisms as its morphisms
- **Ring** and *R*-**mod** for some ring *R* can be formed with ring and module homomorphisms as morphisms
- A subcategory of category **C** is a category with all of its objects and morphisms contained in **C**
- **•** Finite sets and the functions between them form a subcategory of **Set**, and abelian groups are a subcategory of **Grp**. Fields form a subcategory of the category of commutative rings, which is itself a subcategory of **Ring**

K ロ ト K 何 ト K ヨ ト K ヨ ト

 QQ

Functors

- A functor is a structure preserving map between categories
- For categories **C** and **D**, a covariant functor $\mathcal{F}: \mathbf{C} \to \mathbf{D}$ sends the objects of **C** to objects in **D**, and sends the morphisms in **C** to morphisms in **D**
- \bullet If *f* ∈ *Hom*_{**C**}(*X*, *Y*), $\mathcal{F}(f)$ ∈ *Hom*_{**D**}($\mathcal{F}(X)$, $\mathcal{F}(Y)$)
- $\mathcal{F}(1_X)=1_{\mathcal{F}(X)},\, \mathcal{F}(f\circ g)=\mathcal{F}(f)\circ \mathcal{F}(g)$

B

Functors

- A functor is a structure preserving map between categories
- For categories **C** and **D**, a covariant functor $\mathcal{F}: \mathbf{C} \to \mathbf{D}$ sends the objects of **C** to objects in **D**, and sends the morphisms in **C** to morphisms in **D**
- \bullet If *f* ∈ *Hom*_{**C**}(*X*, *Y*), $\mathcal{F}(f)$ ∈ *Hom*_{**D**}($\mathcal{F}(X)$, $\mathcal{F}(Y)$)
- $\mathcal{F}(1_X)=1_{\mathcal{F}(X)},\,\mathcal{F}(f\circ g)=\mathcal{F}(f)\circ\mathcal{F}(g)$

÷.

- The identity functor from **C** to **C** sends every object and morphism in **C** to itself.
- Let F be a map from **Grp** to **Set** sending groups and homomorphisms in Grp to themselves in Set. $\mathcal F$ is a functor from **Grp** to **Set** called the 'forgetful functor'
- Similarly, forgetful functors exist from **Ring** and *R*-**mod** to **Grp** and to **Set**
- A functor from a category to itself is called an endofunctor
- The identity functor is an endofunctor

K ロ ト K 何 ト K ヨ ト K

- The identity functor from **C** to **C** sends every object and morphism in **C** to itself.
- Let F be a map from **Grp** to **Set** sending groups and homomorphisms in Grp to themselves in Set. $\mathcal F$ is a functor from **Grp** to **Set** called the 'forgetful functor'
- Similarly, forgetful functors exist from **Ring** and *R*-**mod** to **Grp** and to **Set**
- A functor from a category to itself is called an endofunctor
- The identity functor is an endofunctor

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ

Date Types

- In computer programming languages, a data type is a set of elements that can be represented by a computer (finitely in binary) in the same way
- Two of the most common data types are $\mathbb Z$ and $\mathbb R$
- Real-world computing has constraints on memory, etc.
- Mathematically, a data type can be treated just as a set

4 伊 ▶

 QQ

Set has sets as objects and functions as morphisms

M*aybe* : **Set** → **Set** M *aybe*(*A*) = $A \cup \{Nothing\}$

M*aybe* lets us define 'safe' versions of partial functions

$$
f: \mathbb{R} \to \text{Maybe}(\mathbb{R})
$$

$$
f(0) = \text{Nothing}
$$

$$
f(x) = 1/x \ (x \neq 0)
$$

メロメメ 御きメ ミトメ ヨメー

÷.

Set has sets as objects and functions as morphisms

M*aybe* : **Set** → **Set** M *aybe*(*A*) = $A \cup \{Nothing\}$

M*aybe* lets us define 'safe' versions of partial functions

$$
f: \mathbb{R} \to \mathcal{M} \mathsf{a} y \mathsf{b} e(\mathbb{R})
$$

$$
f(0) = \mathsf{Nothing}
$$

$$
f(x) = 1/x \ (x \neq 0)
$$

イロト イ押 トイヨ トイヨ トー

 \equiv Ω

Maybe

- M*aybe* is a functor from **Set** to **Set** (endofunctor)
- Needs a mapping for the morphisms (functions)

 M *map* : $Hom(A, B) \rightarrow Hom(Maybe(A), Maybe(B))$ M*map*(*f*)(*Nothing*) = *Nothing* M *map*(*f*)(*x*) = *f*(*x*) (*x* \neq *Nothing*)

• $Mmap(1_A) = 1_{Mapbe(A)}$

 \bullet M*map*($f \circ g$) = M*map*(f) \circ M*map*(g)

 $\Box \rightarrow \neg \neg \Box \rightarrow \neg \neg \Box \rightarrow \neg \neg \Box \rightarrow \neg \neg \Box$

Maybe

- M*aybe* is a functor from **Set** to **Set** (endofunctor)
- Needs a mapping for the morphisms (functions)

$$
\mathcal{Mmap}: \mathcal{H}om(A, B) \to \mathcal{H}om(\mathcal{M}aybe(A), \mathcal{M}aybe(B))
$$

\n
$$
\mathcal{M}map(f)(\text{Nothing}) = \text{Nothing}
$$

\n
$$
\mathcal{M}map(f)(x) = f(x) \ (x \neq \text{Nothing})
$$

\n- $$
\mathcal{M}
$$
map(1_A) = 1_{\mathcal{M}aybe(A)}
\n- \mathcal{M} map(f \circ g) = \mathcal{M}map(f) \circ \mathcal{M} map(g)
\n

 \square

同 × 2990

ă,

B

L*ist* sends a set *A* to the set of 'lists' of elements in *A*

$List \cdot Set \rightarrow Set$ $List(A) = \{()\} ∪ \{(x, x \text{list}) | x \in A, x \text{list} \in List(A)\}$

• () is called the empty list

 $(1,(2,(3,(4,))))$) \in *L* ist(*Z*) (1/2,(*Nothing*,(1/4,()))) ∈ L*ist*(M*aybe*(Q)) $(1, 2, 3, 4) \in \mathcal{L}$ *ist* (\mathbb{Z})

 290

B

イロメ イ押 メイヨメ イヨメ

L*ist* sends a set *A* to the set of 'lists' of elements in *A*

L*ist* : **Set** → **Set** $List(A) = \{()\} ∪ \{(x, x \text{list}) | x \in A, x \text{list} \in List(A)\}\$

 \bullet () is called the empty list

 $(1,(2,(3,(4,)))) \in \mathcal{L}$ **ist** (\mathbb{Z}) $(1/2, (Nothing, (1/4,))) \in List(Maybe(0))$ $(1, 2, 3, 4) \in \mathcal{L}$ *ist* (\mathbb{Z})

 2990

÷.

イロメ イ押 メイヨメ イヨメ

L*ist* sends a set *A* to the set of 'lists' of elements in *A*

L*ist* : **Set** → **Set** *List*(*A*) = {()} ∪ {(*x*, *xlist*)|*x* ∈ *A*, *xlist* ∈ *List*(*A*)}

 \bullet () is called the empty list

$$
(1,(2,(3,(4,)))) \in List(\mathbb{Z})
$$

$$
(1/2,(Nothing, (1/4,)))) \in List(Maybe(\mathbb{Q}))
$$

$$
(1,2,3,4) \in List(\mathbb{Z})
$$

÷.

イロメ イ押 メイヨメ イヨメ

 2990

- L*ist* is an endofunctor on **Set**
- Needs a mapping for the morphisms (functions)

 \mathcal{L} *map* : $Hom(A, B) \rightarrow Hom(\mathcal{L}ist(A), \mathcal{L}ist(B))$ L *map* $(f)(()) = ()$ L *map*(*f*)((*x*, *xlist*)) = (*f*(*x*), L *map*(*f*)(*xlist*))

For $f(x) = x^2$, $\mathcal{L}map(f)((1, 2, 3, 4)) = (1, 4, 9, 16)$

Clearly satisfies functor laws (identity and composition)

K ロ ト K 何 ト K ヨ ト K ヨ ト

B

- L*ist* is an endofunctor on **Set**
- Needs a mapping for the morphisms (functions)

 \mathcal{L} *map* : $Hom(A, B) \rightarrow Hom(\mathcal{L}ist(A), \mathcal{L}ist(B))$ \mathcal{L} *map* $(f)(()) = ()$ \mathcal{L} *map*(*f*)((*x*, *xlist*)) = (*f*(*x*), \mathcal{L} *map*(*f*)(*xlist*))

For $f(x) = x^2$, $\mathcal{L}map(f)((1, 2, 3, 4)) = (1, 4, 9, 16)$

Clearly satisfies functor laws (identity and composition)

KOD KAP KED KED E YA G

- L*ist* is an endofunctor on **Set**
- Needs a mapping for the morphisms (functions)

$$
\mathcal{Lmap}: \mathcal{H}\text{om}(A, B) \to \mathcal{H}\text{om}(\mathcal{L}\text{ist}(A), \mathcal{L}\text{ist}(B))
$$

$$
\mathcal{Lmap}(f)(()) = ()
$$

$$
\mathcal{Lmap}(f)((x, x\text{list})) = (f(x), \mathcal{Lmap}(f)(x\text{list}))
$$

For
$$
f(x) = x^2
$$
, $\mathcal{L}map(f)((1, 2, 3, 4)) = (1, 4, 9, 16)$

Clearly satisfies functor laws (identity and composition)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 2990

÷.

- L*ist* is an endofunctor on **Set**
- Needs a mapping for the morphisms (functions)

$$
\mathcal{Lmap}: \mathcal{H}\text{om}(A, B) \to \mathcal{H}\text{om}(\mathcal{L}\text{ist}(A), \mathcal{L}\text{ist}(B))
$$

$$
\mathcal{Lmap}(f)(()) = ()
$$

$$
\mathcal{Lmap}(f)((x, x\text{list})) = (f(x), \mathcal{Lmap}(f)(x\text{list}))
$$

For
$$
f(x) = x^2
$$
, $\mathcal{L}map(f)((1, 2, 3, 4)) = (1, 4, 9, 16)$

Clearly satisfies functor laws (identity and composition)

4 ロ) (何) (日) (日)

÷.

What does an endofunctor on **Set** to do a set of functions? An applicative functor is a functor with a 'splat' function

 \mathcal{F} *splat* : $\mathcal{F}(\textit{Hom}(A, B)) \rightarrow \textit{Hom}(\mathcal{F}(A), \mathcal{F}(B))$

F*splat* can also be defined as a binary function

 \mathcal{F} *splat* : \mathcal{F} (*Hom*(*A*, *B*)) \times \mathcal{F} (*A*) \rightarrow \mathcal{F} (*B*)

• There are rules applicative functors must follow

イロメ イ押 メイヨメ イヨメ

- What does an endofunctor on **Set** to do a set of functions?
- An applicative functor is a functor with a 'splat' function

 \mathcal{F} *splat* : \mathcal{F} (*Hom*(*A*, *B*)) \rightarrow *Hom*(\mathcal{F} *A*), \mathcal{F} (*B*))

F*splat* can also be defined as a binary function

 \mathcal{F} *splat* : \mathcal{F} (*Hom*(*A*, *B*)) \times \mathcal{F} (*A*) \rightarrow \mathcal{F} (*B*)

• There are rules applicative functors must follow

イロト 不優 トイモト 不思 トー

重。 QQ

- What does an endofunctor on **Set** to do a set of functions?
- An applicative functor is a functor with a 'splat' function

 \mathcal{F} *splat* : $\mathcal{F}(\textit{Hom}(A, B)) \rightarrow \textit{Hom}(\mathcal{F}(A), \mathcal{F}(B))$

F*splat* can also be defined as a binary function

 \mathcal{F} *splat* : \mathcal{F} (*Hom*(*A*, *B*)) \times \mathcal{F} (*A*) \rightarrow \mathcal{F} (*B*)

• There are rules applicative functors must follow

KOD KAP KED KED E YA G

- What does an endofunctor on **Set** to do a set of functions?
- An applicative functor is a functor with a 'splat' function

 \mathcal{F} *splat* : \mathcal{F} (*Hom*(*A*, *B*)) \rightarrow *Hom*(\mathcal{F} *A*), \mathcal{F} (*B*))

F*splat* can also be defined as a binary function

 \mathcal{F} *splat* : \mathcal{F} (*Hom*(*A*, *B*)) \times \mathcal{F} (*A*) \rightarrow \mathcal{F} (*B*)

• There are rules applicative functors must follow

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

M*aybe* is an applicative functor

 M *splat* : M *aybe*($Hom(A, B)$) \times M *aybe*(A) \rightarrow M *aybe*(B) M*splat*(*Nothing*)(_) = M*splat*(_)(*Nothing*) = *Nothing* M *splat* $(f)(x) = f(x)$

• *Cist* is an applicative functor

 \mathcal{L} *splat* : \mathcal{L} *ist*($Hom(A, B)$) \times \mathcal{L} *ist*(A) \rightarrow \mathcal{L} *ist*(B) \mathcal{L} *splat*₁(())() = \mathcal{L} *splat*₁()(()) = () $Lsplat_1((f, flist))((x, xlist)) = (f(x), Lsplat_1(flist))(xlist))$

Could L*ist* be an applicative functor in any other ways?

イロト イ団 トイヨ トイヨ トー

B

M*aybe* is an applicative functor

 M *splat* : Maybe(*Hom*(A, B)) \times Maybe(A) \rightarrow Maybe(B) M*splat*(*Nothing*)(_) = M*splat*(_)(*Nothing*) = *Nothing* M *splat* $(f)(x) = f(x)$

• *Cist* is an applicative functor

 \mathcal{L} *splat* : \mathcal{L} *ist*(\mathcal{H} *Mom*(\mathcal{A}, \mathcal{B})) \times \mathcal{L} *ist*(\mathcal{A}) \rightarrow \mathcal{L} *ist*(\mathcal{B}) \mathcal{L} *splat*₁(())() = \mathcal{L} *splat*₁(_)(()) = () \mathcal{L} *splat*₁((*f*, *flist*))((*x*, *xlist*)) = (*f*(*x*), \mathcal{L} *splat*₁(*flist*)(*xlist*))

Could L*ist* be an applicative functor in any other ways?

KOD KAP KED KED E LORO

M*aybe* is an applicative functor

 M *splat* : Maybe(*Hom*(A, B)) \times Maybe(A) \rightarrow Maybe(B) M*splat*(*Nothing*)(_) = M*splat*(_)(*Nothing*) = *Nothing* M *splat* $(f)(x) = f(x)$

• *Cist* is an applicative functor

 \mathcal{L} *splat* : \mathcal{L} *ist*(\mathcal{H} *Mom*(\mathcal{A}, \mathcal{B})) \times \mathcal{L} *ist*(\mathcal{A}) \rightarrow \mathcal{L} *ist*(\mathcal{B}) \mathcal{L} *splat*₁(())() = \mathcal{L} *splat*₁()(()) = () $Lsplat_1((f, flist))((x, xlist)) = (f(x), Lsplat_1(flist))(xlist))$

Could L*ist* be an applicative functor in any other ways?

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Sources

- • Abstract Algebra by Dummit and Foote
- http://en.wikibooks.org/wiki/Haskell/Category theory
- Lectures by and conversations with Kenny Foner

Images

\bullet

https://bartoszmilewski.files.wordpress.com/2014/10/img_1330.jp

- http://shuklan.com/haskell/L12_files/category.png
- http://ncatlab.org/nlab/files/functor.jpg
- http://www.programmingtunes.com/wpcontent/uploads/2013/04/Types-of-Data.jpg
- https://lh3.googleusercontent.com/proxy/Wkz6vWx9ntZrS2FCduApSQ0E-YsddspOrfnWyKP2J-49Uu8_5ahulOEfHLmT7w2lZMvQ_vhDGxCkqHlM[o1](#page-27-0)[C_](#page-28-0)[0](#page-27-0)[VC](#page-28-0)[kr](#page-0-0)[C](#page-28-0)[Fe](#page-0-0)[Sz](#page-28-0)[fv](#page-0-0)[tW](#page-28-0)4PjI