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@ A category C is a collection of objects with arrows (often
called morphisms) pointing between them

@ Homg(X,Y) is the set of morphisms in C from X to Y
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@ A category C is a collection of objects with arrows (often
called morphisms) pointing between them

@ Homg(X,Y) is the set of morphisms in C from X to Y

e If f € Home(X,Y) and g € Home(Y, Z), then there exists a
morphism f o g in Homg(X, Z) (composition is associative)

@ For every object X in C, there is an identity morphism
1x € Homg(X,X) (folx=fand1xog=g)
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@ Set is the category of all sets, with functions between sets
as the morphisms

@ All groups also form a category, Grp, with group
homomorphisms as its morphisms

@ Ring and R-mod for some ring R can be formed with ring
and module homomorphisms as morphisms
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Set is the category of all sets, with functions between sets
as the morphisms

All groups also form a category, Grp, with group
homomorphisms as its morphisms

Ring and R-mod for some ring R can be formed with ring
and module homomorphisms as morphisms

A subcategory of category C is a category with all of its
objects and morphisms contained in C

Finite sets and the functions between them form a
subcategory of Set, and abelian groups are a subcategory
of Grp. Fields form a subcategory of the category of
commutative rings, which is itself a subcategory of Ring
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Functors

@ A functor is a structure preserving map between categories
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Functors

@ A functor is a structure preserving map between categories

@ For categories C and D, a covariant functor 7 : C — D
sends the objects of C to objects in D, and sends the
morphisms in C to morphisms in D

o If f € Homg(X,Y), F(f) € HomD(]-'(X) F(Y))
° F(1x) =1rx), F(fog) = F(9)
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@ The identity functor from C to C sends every object and
morphism in C to itself.

@ Let F be a map from Grp to Set sending groups and
homomorphisms in Grp to themselves in Set. F is a
functor from Grp to Set called the ‘forgetful functor’

@ Similarly, forgetful functors exist from Ring and R-mod to
Grp and to Set
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@ The identity functor from C to C sends every object and
morphism in C to itself.

@ Let F be a map from Grp to Set sending groups and
homomorphisms in Grp to themselves in Set. F is a
functor from Grp to Set called the ‘forgetful functor’

@ Similarly, forgetful functors exist from Ring and R-mod to
Grp and to Set

@ A functor from a category to itself is called an endofunctor
@ The identity functor is an endofunctor
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Date Types

@ In computer programming languages, a data type is a set
of elements that can be represented by a computer (finitely
in binary) in the same way

@ Two of the most common data types are Z and R
@ Real-world computing has constraints on memory, etc.
@ Mathematically, a data type can be treated just as a set
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@ Set has sets as objects and functions as morphisms

Maybe : Set — Set
Maybe(A) = AU {Nothing}
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@ Set has sets as objects and functions as morphisms

Maybe : Set — Set
Maybe(A) = AU {Nothing}

@ Maybe lets us define ‘safe’ versions of partial functions

f: R — Maybe(R)
f(0) = Nothing
f(x)=1/x(x#0)
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@ Maybe is a functor from Set to Set (endofunctor)
@ Needs a mapping for the morphisms (functions)
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@ Maybe is a functor from Set to Set (endofunctor)
@ Needs a mapping for the morphisms (functions)

Mmap : Hom(A, B) — Hom(Maybe(A), Maybe(B))
Mmap(f)(Nothing) = Nothing
Mmap(f)(x) = f(x) (x # Nothing)

@ Mmap(1a) = 1 papbe(a)
@ Mmap(fog)= Mmap(f) o Mmap(g)

fmap §
Q/—NQ
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@ List sends a set A to the set of ‘lists’ of elements in A

Linked List
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@ List sends a set A to the set of ‘lists’ of elements in A

List : Set — Set
List(A) = {()} U{(x, xlist)|x € A, xlist € List(A)}

@ () is called the empty list
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@ List sends a set A to the set of ‘lists’ of elements in A

List : Set — Set
List(A) = {()} U{(x, xlist)|x € A, xlist € List(A)}

@ () is called the empty list

(1,(2,(3,(4,0))))) € List(Z)
(1/2,(Nothing, (1/4,()))) € List(Maybe(Q))
(1,2,3,4) € List(Z)

Linked List
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@ Listis an endofunctor on Set
@ Needs a mapping for the morphisms (functions)
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@ Listis an endofunctor on Set
@ Needs a mapping for the morphisms (functions)

Lmap : Hom(A, B) — Hom(List(A), List(B))

Lmap(f)(()) = ()
Lmap(f)((x, xlist)) = (f(x), Lmap(f)(xlist))
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@ List is an endofunctor on Set
@ Needs a mapping for the morphisms (functions)
Lmap : Hom(A, B) — Hom(List(A), List(B))
Lmap(f)(()) = ()
Lmap(f)((x, xlist)) = (f(x), Lmap(f)(xlist))

For f(x) = x2, Lmap(f)((1,2,3,4)) = (1,4,9,16)
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@ List is an endofunctor on Set
@ Needs a mapping for the morphisms (functions)
Lmap : Hom(A, B) — Hom(List(A), List(B))
Lmap(f)(()) = ()
Lmap(f)((x, xlist)) = (f(x), Lmap(f)(xlist))

For f(x) = x2, Lmap(f)((1,2,3,4)) = (1,4,9,16)

@ Clearly satisfies functor laws (identity and composition)
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Applicative Functors

@ What does an endofunctor on Set to do a set of functions?
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Applicative Functors

@ What does an endofunctor on Set to do a set of functions?
@ An applicative functor is a functor with a ‘splat’ function

Fsplat : F(Hom(A, B)) — Hom(F(A), F(B))
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Applicative Functors

@ What does an endofunctor on Set to do a set of functions?
@ An applicative functor is a functor with a ‘splat’ function

Fsplat : F(Hom(A, B)) — Hom(F(A), F(B))

@ Fsplat can also be defined as a binary function

Fsplat : F(Hom(A, B)) x F(A) — F(B)
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Applicative Functors

@ What does an endofunctor on Set to do a set of functions?
@ An applicative functor is a functor with a ‘splat’ function

Fsplat : F(Hom(A, B)) — Hom(F(A), F(B))

@ Fsplat can also be defined as a binary function

Fsplat : F(Hom(A, B)) x F(A) — F(B)

@ There are rules applicative functors must follow
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Applicative Functors

@ Maybe is an applicative functor
Msplat : Maybe(Hom(A, B)) x Maybe(A) — Maybe(B)

Msplat(Nothing)(_) = Msplat(_)(Nothing) = Nothing
Msplat(f)(x) = f(x)
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Applicative Functors

@ Maybe is an applicative functor

Msplat : Maybe(Hom(A, B)) x Maybe(A) — Maybe(B)
Msplat(Nothing)(_) = Msplat(_)(Nothing) = Nothing
Msplat(f)(x) = f(x)

@ List is an applicative functor
Lsplat : List(Hom(A, B)) x List(A) — List(B)

Lsplat;(())(L) = £Lsplat; (L)(()) = ()
Lsplaty ((f, flist))((x, xlist)) = (f(x), Lsplat;(flist)(xlist))
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Applicative Functors

@ Maybe is an applicative functor
Msplat : Maybe(Hom(A, B)) x Maybe(A) — Maybe(B)

Msplat(Nothing)(_) = Msplat(_)(Nothing) = Nothing
Msplat(f)(x) = f(x)

@ List is an applicative functor

Lsplat : List(Hom(A, B)) x List(A) — List(B)

Lsplat;(())(L) = £Lsplat; (L)(()) = ()
Lsplaty ((f, flist))((x, xlist)) = (f(x), Lsplat;(flist)(xlist))

@ Could List be an applicative functor in any other ways?
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