Category Theory

& Functional Data Abstraction

Brandon Shapiro

Math 100b

Brandon Shapiro Category Theory



@ A category C is a collection of objects with arrows (often
called morphisms) pointing between them

@ Homg(X,Y) is the set of morphisms in C from X to Y

Brandon Shapiro Category Theory



@ A category C is a collection of objects with arrows (often
called morphisms) pointing between them

@ Homg(X,Y) is the set of morphisms in C from X to Y

e If f € Home(X,Y) and g € Home(Y, Z), then there exists a
morphism f o g in Homg(X, Z) (composition is associative)

@ For every object X in C, there is an identity morphism
1x € Homg(X,X) (folx=fand1xog=g)

1a 1p

Ch 1. p2

N
O

lc

Brandon Shapiro Category Theory



@ Set is the category of all sets, with functions between sets
as the morphisms

@ All groups also form a category, Grp, with group
homomorphisms as its morphisms

@ Ring and R-mod for some ring R can be formed with ring
and module homomorphisms as morphisms

Brandon Shapiro Category Theory



Set is the category of all sets, with functions between sets
as the morphisms

All groups also form a category, Grp, with group
homomorphisms as its morphisms

Ring and R-mod for some ring R can be formed with ring
and module homomorphisms as morphisms

A subcategory of category C is a category with all of its
objects and morphisms contained in C

Finite sets and the functions between them form a
subcategory of Set, and abelian groups are a subcategory
of Grp. Fields form a subcategory of the category of
commutative rings, which is itself a subcategory of Ring

Brandon Shapiro Category Theory



Functors

@ A functor is a structure preserving map between categories

Brandon Shapiro Category Theory



Functors

@ A functor is a structure preserving map between categories

@ For categories C and D, a covariant functor 7 : C — D
sends the objects of C to objects in D, and sends the
morphisms in C to morphisms in D

o If f € Homg(X,Y), F(f) € HomD(]-'(X) F(Y))
° F(1x) =1rx), F(fog) = F(9)

Brandon Shapiro Category Theory



@ The identity functor from C to C sends every object and
morphism in C to itself.

@ Let F be a map from Grp to Set sending groups and
homomorphisms in Grp to themselves in Set. F is a
functor from Grp to Set called the ‘forgetful functor’

@ Similarly, forgetful functors exist from Ring and R-mod to
Grp and to Set

Brandon Shapiro Category Theory



@ The identity functor from C to C sends every object and
morphism in C to itself.

@ Let F be a map from Grp to Set sending groups and
homomorphisms in Grp to themselves in Set. F is a
functor from Grp to Set called the ‘forgetful functor’

@ Similarly, forgetful functors exist from Ring and R-mod to
Grp and to Set

@ A functor from a category to itself is called an endofunctor
@ The identity functor is an endofunctor

Brandon Shapiro Category Theory



Date Types

@ In computer programming languages, a data type is a set
of elements that can be represented by a computer (finitely
in binary) in the same way

@ Two of the most common data types are Z and R
@ Real-world computing has constraints on memory, etc.
@ Mathematically, a data type can be treated just as a set

Brandon Shapiro Category Theory



@ Set has sets as objects and functions as morphisms

Maybe : Set — Set
Maybe(A) = AU {Nothing}

Brandon Shapiro Category Theory



@ Set has sets as objects and functions as morphisms

Maybe : Set — Set
Maybe(A) = AU {Nothing}

@ Maybe lets us define ‘safe’ versions of partial functions

f: R — Maybe(R)
f(0) = Nothing
f(x)=1/x(x#0)

Brandon Shapiro Category Theory



@ Maybe is a functor from Set to Set (endofunctor)
@ Needs a mapping for the morphisms (functions)

Brandon Shapiro Category Theory



@ Maybe is a functor from Set to Set (endofunctor)
@ Needs a mapping for the morphisms (functions)

Mmap : Hom(A, B) — Hom(Maybe(A), Maybe(B))
Mmap(f)(Nothing) = Nothing
Mmap(f)(x) = f(x) (x # Nothing)

@ Mmap(1a) = 1 papbe(a)
@ Mmap(fog)= Mmap(f) o Mmap(g)

fmap §
Q/—NQ
Maggbe. o Mwaseb
$

O/’_\o,b

a

Brandon Shapiro Category Theory



@ List sends a set A to the set of ‘lists’ of elements in A

Linked List

Brandon Shapiro Category Theory



@ List sends a set A to the set of ‘lists’ of elements in A

List : Set — Set
List(A) = {()} U{(x, xlist)|x € A, xlist € List(A)}

@ () is called the empty list

Brandon Shapiro Category Theory



@ List sends a set A to the set of ‘lists’ of elements in A

List : Set — Set
List(A) = {()} U{(x, xlist)|x € A, xlist € List(A)}

@ () is called the empty list

(1,(2,(3,(4,0))))) € List(Z)
(1/2,(Nothing, (1/4,()))) € List(Maybe(Q))
(1,2,3,4) € List(Z)

Linked List

Brandon Shapiro Category Theory



@ Listis an endofunctor on Set
@ Needs a mapping for the morphisms (functions)

Brandon Shapiro Category Theory



@ Listis an endofunctor on Set
@ Needs a mapping for the morphisms (functions)

Lmap : Hom(A, B) — Hom(List(A), List(B))

Lmap(f)(()) = ()
Lmap(f)((x, xlist)) = (f(x), Lmap(f)(xlist))

Brandon Shapiro Category Theory



@ List is an endofunctor on Set
@ Needs a mapping for the morphisms (functions)
Lmap : Hom(A, B) — Hom(List(A), List(B))
Lmap(f)(()) = ()
Lmap(f)((x, xlist)) = (f(x), Lmap(f)(xlist))

For f(x) = x2, Lmap(f)((1,2,3,4)) = (1,4,9,16)

Brandon Shapiro Category Theory



@ List is an endofunctor on Set
@ Needs a mapping for the morphisms (functions)
Lmap : Hom(A, B) — Hom(List(A), List(B))
Lmap(f)(()) = ()
Lmap(f)((x, xlist)) = (f(x), Lmap(f)(xlist))

For f(x) = x2, Lmap(f)((1,2,3,4)) = (1,4,9,16)

@ Clearly satisfies functor laws (identity and composition)

Brandon Shapiro Category Theory



Applicative Functors

@ What does an endofunctor on Set to do a set of functions?

Brandon Shapiro Category Theory



Applicative Functors

@ What does an endofunctor on Set to do a set of functions?
@ An applicative functor is a functor with a ‘splat’ function

Fsplat : F(Hom(A, B)) — Hom(F(A), F(B))

Brandon Shapiro Category Theory



Applicative Functors

@ What does an endofunctor on Set to do a set of functions?
@ An applicative functor is a functor with a ‘splat’ function

Fsplat : F(Hom(A, B)) — Hom(F(A), F(B))

@ Fsplat can also be defined as a binary function

Fsplat : F(Hom(A, B)) x F(A) — F(B)

Brandon Shapiro Category Theory



Applicative Functors

@ What does an endofunctor on Set to do a set of functions?
@ An applicative functor is a functor with a ‘splat’ function

Fsplat : F(Hom(A, B)) — Hom(F(A), F(B))

@ Fsplat can also be defined as a binary function

Fsplat : F(Hom(A, B)) x F(A) — F(B)

@ There are rules applicative functors must follow

Brandon Shapiro Category Theory



Applicative Functors

@ Maybe is an applicative functor
Msplat : Maybe(Hom(A, B)) x Maybe(A) — Maybe(B)

Msplat(Nothing)(_) = Msplat(_)(Nothing) = Nothing
Msplat(f)(x) = f(x)

Brandon Shapiro Category Theory



Applicative Functors

@ Maybe is an applicative functor

Msplat : Maybe(Hom(A, B)) x Maybe(A) — Maybe(B)
Msplat(Nothing)(_) = Msplat(_)(Nothing) = Nothing
Msplat(f)(x) = f(x)

@ List is an applicative functor
Lsplat : List(Hom(A, B)) x List(A) — List(B)

Lsplat;(())(L) = £Lsplat; (L)(()) = ()
Lsplaty ((f, flist))((x, xlist)) = (f(x), Lsplat;(flist)(xlist))

Brandon Shapiro Category Theory



Applicative Functors

@ Maybe is an applicative functor
Msplat : Maybe(Hom(A, B)) x Maybe(A) — Maybe(B)

Msplat(Nothing)(_) = Msplat(_)(Nothing) = Nothing
Msplat(f)(x) = f(x)

@ List is an applicative functor

Lsplat : List(Hom(A, B)) x List(A) — List(B)

Lsplat;(())(L) = £Lsplat; (L)(()) = ()
Lsplaty ((f, flist))((x, xlist)) = (f(x), Lsplat;(flist)(xlist))

@ Could List be an applicative functor in any other ways?

Brandon Shapiro Category Theory



Sources & Images

Sources

Abstract Algebra by Dummit and Foote
http://en.wikibooks.org/wiki/Haskell/Category_theory
Lectures by and conversations with Kenny Foner

Images

https://bartoszmilewski.files.wordpress.com/2014/10/img_1330.jg
http://shuklan.com/haskell/L12_files/category.png
http://ncatlab.org/nlab/files/functor.jpg
http://www.programmingtunes.com/wp-
content/uploads/2013/04/Types-of-Data.jpg
https://In3.googleusercontent.com/proxy/W-
kz6vWx9ntZrS2FCduApSQOE-YsddspOrfnWyKP2J-
49Uu8_5ahu-
IOEfHLMT7w2IZMvQ_vhDGxCkqHIMo1C_0VCkrCFeSzfviW4PjL

Brandon Shapiro Category Theory



