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Categories

A category C is a collection of objects with arrows (often
called morphisms) pointing between them
HomC(X ,Y ) is the set of morphisms in C from X to Y
If f ∈ HomC(X ,Y ) and g ∈ HomC(Y ,Z ), then there exists a
morphism f ◦ g in HomC(X ,Z ) (composition is associative)
For every object X in C, there is an identity morphism
1X ∈ HomC(X ,X ) (f ◦ 1X = f and 1X ◦ g = g)
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Examples

Set is the category of all sets, with functions between sets
as the morphisms
All groups also form a category, Grp, with group
homomorphisms as its morphisms
Ring and R-mod for some ring R can be formed with ring
and module homomorphisms as morphisms
A subcategory of category C is a category with all of its
objects and morphisms contained in C
Finite sets and the functions between them form a
subcategory of Set, and abelian groups are a subcategory
of Grp. Fields form a subcategory of the category of
commutative rings, which is itself a subcategory of Ring
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Functors

A functor is a structure preserving map between categories
For categories C and D, a covariant functor F : C→ D
sends the objects of C to objects in D, and sends the
morphisms in C to morphisms in D
If f ∈ HomC(X ,Y ), F(f ) ∈ HomD(F(X ),F(Y ))

F(1X ) = 1F(X), F(f ◦ g) = F(f ) ◦ F(g)
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Examples

The identity functor from C to C sends every object and
morphism in C to itself.
Let F be a map from Grp to Set sending groups and
homomorphisms in Grp to themselves in Set. F is a
functor from Grp to Set called the ‘forgetful functor’
Similarly, forgetful functors exist from Ring and R-mod to
Grp and to Set
A functor from a category to itself is called an endofunctor
The identity functor is an endofunctor
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Date Types

In computer programming languages, a data type is a set
of elements that can be represented by a computer (finitely
in binary) in the same way
Two of the most common data types are Z and R
Real-world computing has constraints on memory, etc.
Mathematically, a data type can be treated just as a set
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Maybe

Set has sets as objects and functions as morphisms

Maybe : Set→ Set
Maybe(A) = A ∪ {Nothing}

Maybe lets us define ‘safe’ versions of partial functions

f : R→Maybe(R)
f (0) = Nothing

f (x) = 1/x (x 6= 0)
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Maybe

Maybe is a functor from Set to Set (endofunctor)
Needs a mapping for the morphisms (functions)

Mmap : Hom(A,B)→ Hom(Maybe(A),Maybe(B))
Mmap(f )(Nothing) = Nothing
Mmap(f )(x) = f (x) (x 6= Nothing)

Mmap(1A) = 1Maybe(A)

Mmap(f ◦ g) =Mmap(f ) ◦Mmap(g)
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List

List sends a set A to the set of ‘lists’ of elements in A

List : Set→ Set
List(A) = {()} ∪ {(x , xlist)|x ∈ A, xlist ∈ List(A)}

() is called the empty list

(1, (2, (3, (4, ())))) ∈ List(Z)
(1/2, (Nothing, (1/4, ()))) ∈ List(Maybe(Q))

(1,2,3,4) ∈ List(Z)
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List

List is an endofunctor on Set
Needs a mapping for the morphisms (functions)

Lmap : Hom(A,B)→ Hom(List(A),List(B))
Lmap(f )(()) = ()

Lmap(f )((x , xlist)) = (f (x),Lmap(f )(xlist))

For f (x) = x2, Lmap(f )((1,2,3,4)) = (1,4,9,16)

Clearly satisfies functor laws (identity and composition)
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Applicative Functors

What does an endofunctor on Set to do a set of functions?
An applicative functor is a functor with a ‘splat’ function

Fsplat : F(Hom(A,B))→ Hom(F(A),F(B))

Fsplat can also be defined as a binary function

Fsplat : F(Hom(A,B))×F(A)→ F(B)

There are rules applicative functors must follow
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Applicative Functors

Maybe is an applicative functor

Msplat :Maybe(Hom(A,B))×Maybe(A)→Maybe(B)
Msplat(Nothing)(_) =Msplat(_)(Nothing) = Nothing

Msplat(f )(x) = f (x)

List is an applicative functor

Lsplat : List(Hom(A,B))× List(A)→ List(B)
Lsplat1(())(_) = Lsplat1(_)(()) = ()

Lsplat1((f , flist))((x , xlist)) = (f (x),Lsplat1(flist)(xlist))

Could List be an applicative functor in any other ways?
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