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1. Introduction

Two topological spaces are most commonly considered to be equivalent if there is a

homeomorphism between them; a function from the points of one space to those of another

that happens to preserve the topological structure of the spaces. However, a topological

space is characterized by both a set of points and a collection of subsets of those points

which are closed under unions and finite intersections. This collection of “open” subsets can

be described by a special kind of lattice, which can be used to define a different equivalence

relation of topological spaces; namely, two spaces are equivalent when they have isomorphic

lattices of open sets. It is then natural to consider how these two notions of equivalence

relate to each other. For instance, what kinds of relationships exist between spaces with

isomorphic open subset lattices? Are they always homeomorphic? These relationships

have been studied by category theorists (for instance, Stone Duality), relating the study

of topology with points in a space as the fundamental objects to that with open sets as

fundamental outside of the context of the points they contain (sometimes called “Pointless

Topology”)(3). These topics rely heavily on category and lattice theory, but here I will

describe a similar equivalence of topological spaces using only categories and functors, and

show that for a significant class of spaces it is equivalent to homeomorphism.

2. Categorically Isomorphic Spaces

A topology on a set X is a subcollection of the power set of X, the elements of which

are called open sets. It is straightforward to show that this collection of open sets forms a

category, where there is a morphism from each open set to each open set containing it (1).

Definition 1. For topological space X, let OpX denote the category of open sets of X,

where for U, V open in X, Hom(U, V ) is the singleton set if U ⊆ V and empty otherwise.

From this definition comes the desired equivalence of topological spaces, as two spaces

can be compared by their categories of open sets. There is more than one standard equiv-

alence relation on categories, but here isomorphism is the most intuitive to consider (4).
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Definition 2. Categories C and D are isomorphic if there exist functors F : C → D,

G : D → C such that F ◦ G is the identity functor on C and G ◦ F is the identity functor

on D. G can then be written as F−1.

Definition 3. Topological spaces X and Y are categorically isomorphic if there is an

isomorphism of categories between OpX and OpY . Unpacking this statement, X and Y

are categorically isomorphic if there is a bijective function F from the open sets of X to

those of Y such that if U ⊆ V in X, F (U) ⊆ F (V ) in Y . The inverse F−1 : OpY → OpX
satisfies the same property.

As morphisms between pairs of open sets are unique (Hom is always a singleton set if

nonempty), the functor laws reduce to guaranteeing the existence of a morphism between

open sets in Y if there is a morphism between their preimages in X (composition is satisfied

trivially). This simplification of the functor laws suggests that giving the structure of a

category to a topology is redundant, as a simpler algebraic structure would suffice (3).

3. Functor Induced by Homeomorphism

Proposition 1. Homeomorphic topological spaces are categorically isomorphic.

Proof Let X and Y be topological spaces and f : X → Y be a homeomorphism. Define

F : OpX → OpY such that for open U ⊆ X, F (U) = f(U), which is open in Y as f is a an

open map. As f is injective, if U and V are distinct subsets of X, then f(U) and f(V ) are

also distinct, so F is injective. As f is continuous, every open set in Y is the image of an

open set in X, so F is surjective. If U ⊆ V in X, then f(U) ⊆ f(V ) in Y (true of functions

in general). F then satisfies the properties of the function in definition 3. It follows from

bijectivity of f that for open W ⊆ Y , F−1(W ) = f−1(W ), so F−1 has the same properties,

as f−1 is a homeomorphism. X and Y are therefore categorically isomorphic. ut

This result shows that categorical isomorphism of topological spaces is a strictly weaker

notion of equality than homeomorphism.

4. Homeomorphism of Categorically Isomorphic T1 Spaces

Example 1. Consider a finite topological space X. Let Y be the space such that for every

point x ∈ X there are two points x1, x2 in Y , and for each open U ⊆ X, U ′ = {x1, x2|x ∈ U}
is open in Y (and these are all of the open sets in Y ). It can be checked that the map
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sending U ⊆ X to U ′ ⊆ Y is bijective and preserves subset inclusion, so X and Y are

categorically isomorphic, yet they are not homeomorphic, as Y has twice as many points

as X so there is no bijection between them.

As is demonstrated by this example, categorical isomorphism of topological spaces is

not equivalent to homeomorphism, as points can be added to a space without changing

the subset structure of the open sets if they are indistinguishable (at least by inclusion in

open sets) from some other point in the space. It is natural then to consider spaces where

this cannot happen; spaces that require distinct points to be separated in some way. As is

shown below, the T1 condition is sufficient, based on the fact that a topological space is T1

if and only if all singleton subsets are closed (5).

Proposition 2. Categorically isomorphic T1 topological spaces are homeomorphic.

Proof Let X and Y be T1 and categorically isomorphic. There is then a bijective function

F from the open sets of X to those of Y such that F and F−1 preserve subset relationships.

U ⊆ X for all open U in X, so F (U) ⊆ F (X) for all U . F is surjective, therefore

V ⊂ F (X) for all open V in Y , so Y ⊆ F (X), hence F (X) = Y .

As X is T1, all singleton sets are closed, so for each x ∈ X, Cx = X − {x} is open.

As the complement of a single point, if Cx ⊆ U then U must be either Cx or X. F (Cx) is

then an open set in Y . If F (Cx) is not the complement of a single point, then (as it cannot

be Y as Cx 6= X and F is injective) the complement of F (Cx) has multiple points. The

complement of each of those points contains F (Cx), and is open as Y is T1. F−1 then sends

said complement to an open set in X containing Cx (as F−1 preserves subset relationships)

but not equal to X, a contradiction. Therefore, F (Cx) is the complement of a point in Y .

Define f : X → Y : x 7→ Y − F (Cx). f is well defined as Y − F (Cx) is a single point

as shown above. f is injective because F is injective, since the complement of each point

in X is sent by F to the complement of a point in Y , but no two open sets in X can be

sent to the same open set in Y , so as points in Y can be determined by their complements,

no two points in X are sent by f to the same point. The same argument as above applied

to F−1 shows that for any y ∈ Y , Dy = Y − {y} is sent by F−1 to Cx for some x ∈ X.

Therefore, F (Cx) = Dy, so f(x) = y, hence f is surjective.

Let U be open in X. U can be written as U =
⋂

x∈X−U Cx. As f is injective,

it distributes over intersections, so f(U) = f(
⋂

x∈X−U Cx) =
⋂

x∈X−U f(Cx). As f is

bijective, f(Cx) = Df(x), so f(U) =
⋂

x∈X−U Df(x). U ⊆ Cx for all x ∈ X − U , so

F (U) ⊆ F (Cx) = Df(x) for all such x. Therefore, F (U) ⊆
⋂

x∈X−U Df(x) = f(U). Consider
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y ∈ f(U) − F (U). As y�∈F (U), F (U) ⊆ Dy, so F−1(F (U)) = U ⊆ F−1(Dy) = Cf−1(y).

Therefore, f−1(y) ∈ X − U , so f(U) =
⋂

x∈X−U Df(x) ⊆ Df(f−1(y)) = Dy. However,

y ∈ f(U), so y ∈ Dy, a contradiction. Therefore f(U)−F (U) is empty, so as F (U) ⊆ f(U),

F (U) = f(U). By the same argument, for open V ⊆ Y , F−1(V ) = f−1(V ).

For open V ⊆ Y , f−1(V ) = F−1(V ), which is open in X, so f is continuous. Similarly,

for open U ⊆ X, f(U) = F (U), which is open in Y , so f−1 is continuous. f was shown

above to be bijective, so f is a homeomorphism between X and Y . ut

5. Conclusion

Fundamental to category theory is the idea that most areas of mathematics use the

same basic concepts to study a variety of different topics, often focusing on some structure

added to a set. However, topological structure can be far more complicated than many

algebraic structures, as elements of both the set and its power set must be considered.

For instance, the entire field of algebraic topology is devoted to using simpler algebraic

objects to study topological spaces. While many algebraic structures can be related to

topological spaces, a natural structure to consider would be one derived from the definition

of a topology itself; some meaningful algebraic structure on the open sets of the topology.

Ideally, with such a structure, topological spaces with equivalent such structures could

be related in some more traditional way, and algebraic ideas pertaining to the structure

(means of combination, substructures, structure preserving functions, etc.) would translate

to topological ideas. As previously suggested, a category is not necessarily the most natural

such structure, but it illustrates how meaningful information about a topological space can

be extracted by focusing on the open sets themselves and not the points they contain.
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