
Topological Modular Forms

Brandon Shapiro

The theory of topological modular forms, constructed as a generalization of modular

forms from number theory, illustrate a beautiful connection between algebraic geometry

and homotopy theory. These notes provide what I see as a shortest possible path to

understanding what TMF is and why it is interesting to homotopy theorists, for those

more familiar with homotopy theory than algebraic geometry or number theory. This

background was (and remains) my own as I prepared for my “A exam” on this topic, so

these notes are meant to be the road map I would have found most helpful.

Roughly following the first reference, course notes by Charles Rezk, I build up to

an operational definition of the spectrum tmf by analogy with the theory of Weierstrass

curves, then outline some computations of its homotopy groups, weaving in throughout

motivation and intuition from homotopy theory.
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1. Motivation

Chromatic homotopy theory studies the structure of a particular category of commu-

tative ring spectra by breaking it up into more tractable pieces, which can tell us things

about the sphere spectrum which is initial among all ring spectra (even if it is not among

the spctra we consider). In particular, the spectra E we work with here are even periodic,

so Em ∼= Em+2 for all m ∈ Z and E2k+1 ∼= 0. For E an even periodic ring spectrum, we

write E0 for the ring E0(pt) ∼= E0(pt) ∼= π0(E).

The chromatic decomposition of these spectra is based on their associated formal

group laws. A computation using the Atiyah-Hirzebruch spectral sequence shows that for

E even periodic, E0(CP∞) ∼= E0[[t]] and E0(CP∞ × CP∞) ∼= E0[[x, y]] as rings. These

isomorphisms are not canonical, determined by the choice of “coordinates” t, x, y, but all

of our constructions will be independent of coordinates.

For γ the universal bundle over CP∞, the bundle γ ⊗ γ over CP∞ ×CP∞ classifies a

map CP∞×CP∞ → CP∞. We then have a homomorphism E0[[t]]→ E0[[x, y]], determined

by the image of t, a formal power series FE(x, y) called a formal group law over E0. FE
behaves like an abelian group operation (associative, commutative, has 0 as unit) by the

same properties of ⊗. Different choices of coordinates on E define distinct formal group

laws, but they are related by isomorphisms of formal group laws. Rather than describe

what that means, we can define the coordinate-free notion of formal group.

If B → E0 is a homomorphism of E0-algebras with the preimage of 0 in B a nilpotent

ideal nil(B), then FE defines an abelian group structure on that ideal where the “sum” of

two elements x and y is FE(x, y). Nilpotence ensures that each F (x, y) converges in nil(B),

and B is called an adic E0-algebra. A formal group is a functor from adic E0-algebras to

abelian groups whose underlying functor to sets is isomorphic to nil. A particular choice

of that natural isomorphism is suggestively called a coordinate, and a formal group with a

choice of coordinate can be shown to provide the same information as a formal group law.

Passing to formal group laws F lets us more easily define invariants of spectra. Let

[0]F (x) = x and [k]F (x) = F ([k−1]F (x), x), the n-times repeated application of F . For p a

prime and F a group law over a field of characteristic p, [p]F (x) = px+... = vnx
pn+.... This

n is called the height of F , set to be 0 for fields of characteristic 0, and it is an invariant of

formal groups, meaning it doesn’t depend on choice of coordinate. In particular, the height
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(for given p) is an invariant of even periodic ring spectra with fields as their coefficient rings.

Heights say a lot about formal group laws over fields, as if the field is separably closed

then height completely determines the isomorphism classes of formal groups. The situation

is more complicated for general rings, but we can think of the height of a formal group

law for a given p as the lowest n such that [p]F (x) = vnx
pn + ... (mod p). In this setting

it matters whether vn is invertible or not, and how the height varies over different primes,

but the amount of detail given here should be enough to motivate what follows.

One of the goals of chromatic homotopy theory is to detect information about the ho-

motopy groups of spheres. One can search for pn-periodic elements by applying a “multiply

by p” map like in the definition of height, and keeping track of how many of these opera-

tions it takes to send particular group elements to zero. The theory then goes further by

breaking up more general cohomology theories according to these heights, independently

of the different primes.

One way to do this is by constructing a “universal theory for height n”, and examples

of this at low heights are well understood. Rational homotopy theory models height 0, and

complex topological K-theory models height 1. The following sections cover how elliptic

curves are used to build a model for height 2, what “universal” means in this setting, and

some computational tools used to verify that universality.

2. Weierstrass Equations

Elliptic curves are a particularly nice class of abelian group schemes, with connections

to number theory and cryptography. The Weierstrass equations discussed here are conve-

nient representations of elliptic curves, and in fact every elliptic curve has a Weierstrass

parameterization, discussed below. All of these definitions are in [1, Section 9], and for

more on this see [2, Chapter III].

Definition 1. Let R be a ring. A Weierstrass equation in affine coordinates over R is an

equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ R. Call this Fa(x, y), where a = (a1, a2, a3, a4, a6).

(It will soon make sense that we use a6 instead of a5.) We write Ca for the curve

in P 2
R given by solutions to Z3Fa(X/Z, Y/Z), where Ca contains solutions to the affine
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equation Fa along with a single point e at infinity. A coordinate transformation is then an

isomorphism (of schemes) P 2
R → P 2

R sending Ca′ to Ca and preserving e. This turns out to

always have the following form:

Definition 2. A coordinate change between Weierstrass equations given by parameters a′

and a consists of constants r, s, t, λ, λ−1 ∈ R such that setting

x = λ−2x′ + r

y = λ−3y′ + λ−2sx′ + t

yields λ6Fa(x, y) = Fa′(x
′, y′). Call this φr,s,t,λ : Fa′ → Fa.

For fixed ai, r, s, t, λ, a′ is determined by

a′1 = λ(a1 + 2s),

a′2 = λ2(a2 − a1s− s2 + 3r),

a′3 = λ3(a3 + a1r + 2t),

a′4 = λ4(a4 − a3s+ 2a2r − a1t− a1rs− 2st+ 3r2), and

a′6 = λ6(a6 + a4r − a3t+ a2r
2 − a1rt+ r3 − t2).

and a′i will refer to these formulas throughout these notes. We want to treat these

transformations as isomorphisms, or reparameterizations of the same curve, so they ought

to be composable and invertible. Coordinate changes can be composed by φr,s,t,λ◦φr′,s′,t′,λ′ =

φ∇rr′ ,∇ss′ ,∇tt′ ,∇λλ′ where

∇rr′ = r + λ−2r′,

∇ss′ = s+ λ−1s′,

∇tt′ = t+ λ−1t′ + λ−2sr′, and

∇λλ′ = λλ′.

Similarly we can compute formulas for the inverse coordinate transformation with

parameters χr, χs, χt, χλ that solve ∇xχx = 1 for x = r, s, t, λ. Clearly χλ = λ−1, and we

can solve for χr, χs, χt in the following matrix equation:

 λ−2 0 0

0 λ−1 0

s 0 λ−3


 χr

χs
χt

 =

 1− r
1− s
1− t


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 χr
χs
χt

 =

 λ2(1− r)
λ(1− s)

λ3(1− t− λ2s(1− r))


where the other inverse identity holds as well. With these compositions and inverses,

along with identities where (r, s, t, λ) = (0, 0, 0, 1), Weierstrass equations and coordinate

transformations over R can be shown to form a groupoid.

3. Universality and Hopf Algebroids

One of the nice things about Weierstrass curves is that they can be uniquely charac-

terized as pullbacks of a single “universal Weierstrass curve” over a ring A. Over a general

ring R, a Weierstrass equation is determined by five elements ai ∈ R, so a good choice of

A would be the universal ring with five chosen elements, A = Z[a1, a2, a3, a4, a6]. In par-

ticular, we have Hom(A,R) ∼= R5 ∼= {Weierstrass equations over R}. In terms of curves,

any Ca is given by a pullback square

Ca Ca

Spec(R) Spec(A)

where Ca is the universal Weierstrass curve with ai = ai ∈ Z[a1, a2, a3, a4, a6]. There is

also a universal coordinate transformation, but it requires freely adding new parameters to

the ring. Γ = A[r, s, t, λ, λ−1] has a Weierstrass curve with ai = ai and a transformation

into it with r = r etc. from the curve with a′i = a′i(a) according to the formulas for a′i from

the previous section. Any coordinate transformation of Weierstrass curves is determined

by choices of ai, r, s, t, λ, and a map from Γ → R picks out precisely that, so w have

Hom(Γ, R) ∼= {coordinate transformations over R}.

Both the object part and the morphism part of the functor W : Ring → Groupoid

sending R to its groupoid of Weierstrass curves and coordinate transformations are repre-

sentable, by A and Γ respectively. But more than that, the entire functor is represented

by structure on A and Γ. We have the following diagram of rings:

A Γ Γ⊗t,sA Γ

t(ai)=ai

s(ai)=a
′
i

ε(r,s,t,λ)=(0,0,0,1) ∇(r,s,t,λ)=(∇rr′ ,∇ss′ ,∇tt′ ,∇λλ′ )
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along with the similarly defined involution χ : Γ→ Γ. Here r′, r (etc.) are the variables in

the left,right copies of Γ respectively in the tensor product. For each ring R, Hom(−, R)

sends colimits to limits, so Hom(Γ⊗t,sA Γ, R) ∼= Hom(Γ, R)×s
∗,t∗

Hom(A,R). The source, target,

identity, composition, and inverse maps of the groupoid W (R) are precomposition with,

respectively, s, t, ε,∇, χ. In this sense the diagram above represents W .

Definition 3. A Hopf algebroid is a groupoid object in the category Ringop, or equivalently

a co-groupoid object in Ring.

The diagram above is a Hopf algebroid called (A,Γ), once it’s been checked to satisfy

the usual unit, associativity, and inverse equations (these aren’t hard to do but would

take up a lot of space), and any Hopf algebroid represents a functor Ring → Groupoid

in the same way. Ignoring χ for the moment, an equivalent way of expressing the unit

and associativity equations is by demanding that the diagram pictured above extends to a

cosimplicial ring ∆→ Ring : n 7→ Γ⊗n for n > 0:

A Γ Γ⊗t,sA Γ Γ⊗3 · · ·
t

s
ε ∇

The outermost face maps past s, t in lowest dimension are the canonical inclusions

into (iterated) pushouts. The degeneracies and inner face maps are tensor products of

respectively ε and ∇ with identities on all other copies of Γ. For instance, associativity

means that (∇ ⊗ id) ◦ ∇ = (id ⊗ ∇) ◦ ∇, which corresponds to the cosimplicial identity

d1◦d1 = d2◦d1. So, very generally, a diagram like the above is a co-category object when it

extends to a cosimplicial object of iterated pushouts. We can say something similar for co-

groupoid objects by replacing ∆ by its “groupoidal analogue” ∆̃ which adds an involution

to every object in ∆ except 0, but that won’t be needed that here.

This perspective is useful for algebraic topology, since by the Dold-Kan correspondence

a Hopf algebroid viewed as a cosimplicial ring has an associated cohomologically graded

complex of rings, which for the motivating example we write C•(A,Γ) and call the cobar

complex.

4. Elliptic Spectra

At this point, we have a rather precise sense of the structure of Weierstrass curves:

over each ring they form a groupoid, and there is a universal curve over the object ring of
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the representing Hopf algebroid. For chromatic homotopy theory, the goal is to study even

periodic ring spectra, and Weierstrass curves can be used to control the heights of these

spectra.

Definition 4. An elliptic spectrum consists of an even periodic ring spectrum E, a pointed

abelian group scheme C over E0, and an isomorphism between the formal groups associated

to E and C.

A pointed scheme over E0 is a pair of maps of schemes Spec(E0)
e−→ C → Spec(E0)

that compose to the identity on Spec(E0). When C is affine it is spec of an adic E0-algebra.

C is a pointed abelian group scheme when it has a structure map C ×Spec(E0) C → C over

Spec(E0) which, along with e, makes C an abelian group object in the category of pointed

schemes over E0, denoted E0/Scheme/E0.

For C as in the definition, there is a functor Ĉ : adic(E0) → Ab sending B to

HomE0/Scheme/E0
(Spec(B), C). We want this to be a formal group to use in defining

elliptic spectra, meaning its underlying functor to Set is isomorphic to nil sending B to

the kernel of B → E0.

Proposition 5. If e : Spec(E0) → C factors as Spec(E0)
Spec(f)−−−−−→ Spec(R) ↪→ C, then R

is an E0-algebra over E0 and Ĉ(B) ∼= Homalg(E0)/E0
(R,B). Furthermore for I = ker(f),

Homalg(E0)/E0
(R,B) ∼= colimnHomadic(E0)(R/I

n, B).

For the latter statement, observe that any map in Homalg(E0)/E0
(R,B) sends I to

the kernel of B, which is nilpotent, so the map factors through R/In for some n. This

reduces the task of showing Ĉ ∼= nil (as functors to Set) to finding such an R where each

map in Homalg(E0)/E0
(R,B) uniquely determines an element of nil(B). Ideally R could

be chosen isomorphic to E0[[t]], and if so then Ĉ is a formal group. However, instead of

further investigating when this occurs, we will restate the definition of elliptic spectrum to

assume this concern away:

Definition 6. An elliptic spectrum consists of an even periodic ring spectrum E, a

pointed abelian group scheme C over E0, and a natural isomorphism of functors FE ∼=
Ĉ : adic(E0)→ Ab.

Example 7. Two familiar even periodic theories are ordinary periodic cohomologyHP ∗(−, R) :

X 7→ H∗(X)⊗R R[u, u−1] (u in degree 2) and complex K-theory, which have respectively

the additive and multiplicative formal group laws FHP (x, y) = x+y, FK(x, y) = xy+x+y.

These form elliptic spectra when paired with: the affine line A1 which has associated to it
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the additive formal group, and the punctured line A1 − {0} with the multiplicative formal

group.

The purpose of elliptic spectra is to restrict to spectra whose formal groups can be an-

alyzed using algebraic geometry, where the work has often already been done. In particular

we will restrict to spectra with formal groups arising from Weierstrass curves.

5. Weierstrass Parameterizations

Since the goal is to use Weierstrass curves to control the formal group laws of our

spectra, we need to know how to detect Weierstrass curves among abelian group schemes.

To avoid any coordinate dependence, we consider all possible presentations of a scheme as

a Weierstrass curve as follows.

Definition 8. For C over spec(R), a Weierstrass parameterization of C is an embedding

C ↪→ P 2
R× spec(R) over spec(R) whose image in P 2 is a Weierstrass curve. Denote the set

of such parameterizations W (C/R).

Example 9. If C is given by a Weierstrass curve Ca overR, thenW (C/R) ∼= {(r, s, t, λ, λ−1)}
(values in R) is the set of coordinate transformations of Ca, but this isomorphism depends

on the choice of parameters a, as the different parameterizations in W (C/R) are given by

applying each r, s, t, λ to a.

This suggests that when C has any Weierstrass parameterization then W (C/R) is

isomorphic to HomRing(Z[r, s, t, λ±], R) ∼= Homalg(R)(R[r, s, t, λ±], R). This turns out to

be the case even as the level of elliptic spectra.

Proposition 10. ([1], 12.4)

1. There exists a ring spectrum Y such that for (E,C) an elliptic spectrum,

homalg(E0)(π0(E ∧ Y ), R)
∼=−→W (C ×spec(E0) spec(R)/R) =: W (C ⊗E0 R)

2. (E ∧ Y,C ⊗E0 E0(Y ) =: C ′) is an elliptic spectrum and any Weierstrass parameteri-

zation of C determines an isomorphism π0(E ∧ Y ) ∼= E0[r, s, t, λ, λ−1].

3. C ′ has a canonical Weierstrass parameterization represented by

id ∈ homalg(E0)(π0(E ∧ Y ), π0(E ∧ Y ))
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Y can be constructed as the Thom spectrum of the map ΩU(4) → ΩU ∼= Z × BU ,

where the Thom spectrum of BU represents coordinates in the same way Y represents

Weierstrass parameterizations, but we defer the proof to ([1], Sections 6 and 12).

In the groupoid of Weierstrass curves over E0 there can be nontrivial automorphisms,

i.e. instances where a′ = a but (r, s, t, λ) 6= (0, 0, 0, 1), including in the connected compo-

nent of that groupoid (if any) whose morphisms are described by W (C/E0). The group

of automorphisms at any object determines a connected groupoid up to equivalence, so in

a sense these symmetries describe all of the “Weierstrass structure” of C. Passing from

(E,C) to (E ∧ Y,C ′) adds a canonical Weierstrass parameterization, but ultimately de-

stroys information, as the scheme C ′ equipped with a choice of parameterization no longer

has nontrivial automorphisms, which would not be natural with respect to the canonical

embedding.

Ultimately, our interest in describing C as a Weierstrass curve, and modifying (E,C)

to make it one if necessary, comes back to heights of formal group laws. A Weierstrass

curve C is always an abelian group scheme, so it makes sense to study its associated formal

group Ĉ.

Proposition 11. ([1],11.5 and [2],III.6.2) For C a Weierstrass curve over a field of pos-

itive characteristic, Ĉ has height 1, 2, or ∞.

This is ultimately the motivation for using Weierstrass curves to describe the formal

group laws of ring spectra. Their heights are constrained to 1, 2, or ∞ over fields, and

while we won’t go into more detail over general rings this suggests that these are good

models generally for formal groups restricted to these heights. We can also specify that

the curves with height∞ are those isomorphic to that given by a = (0, 0, 0, 0, 0) describing

(y2 = x3), and the curves with height 1 are isomorphic to y2 + xy = x3. All other curves

are called supersingular and have height 2.

6. Higher Universality

In the same way that Weierstrass curves have a “universal model” in the curve over

A with ai = ai, we would like to find a similar universal model of elliptic spectra. Ulti-

mately this will be possible with certain restrictions, but first we begin at the level of Hopf

algebroids:

Proposition 12. ([1], 14.2) For (E,C) an elliptic spectrum and Y as above, (π0(E ∧
Y ), π0(E ∧ Y ∧2)) forms a Hopf algebroid with a canonical map from (A,Γ).
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Proof. By the above proposition if we fix a Weierstrass parameterization of E landing

in Ca, we have π0(E∧Y ) ∼= π0(E)[r, s, t, λ±] and π0(E∧Y ∧2) ∼= π0(E)[r, s, t, λ±, r′, s′, t′, λ′]

and so on, with a copy of r, s, t, λ for each power of Y . The sets represented by these rings

with respect to R are W (C ⊗E0 R) and W (C ⊗E0 R)2 respectively, with source and target

maps defined by projection, identity by diagonal, and composition by ignoring the middle

component of a triple of three choices of (r, s, t, λ) in R. In other words these rings represent

the contractible groupoid on the object set W (C ⊗E0 R). These natural structure maps

are all representable as ring homomorphisms, making up the Hopf algebroid structure.

Since (E∧Y,C ′) has a canonical Weierstrass parameterization as Ca, there is a canon-

ical choice of map A→ π0(E∧Y ) sending the formal ai ∈ A to this ai, and similarly a map

from Γ picking out the formal transformation given by r′, s′, t′, λ′ in π0(E ∧ Y ∧2). Note

that these maps commute with the map of Hopf algebroids induced by any map of elliptic

spectra. ut

This tells us that (A,Γ) is universal among not just rings with Weierstrass curves (and

coordinate transformations), but also all Hopf algebroids of this sort describing canonically

parameterized elliptic spectra in the sense of the previous section. This raises the question

of whether this universality extends to elliptic spectra: is there some such “universal”

parameterized elliptic spectrum with (A,Γ) as its corresponding Hopf algebra?

This is certainly not the case, as the groupoids represented by (A,Γ) are generally not

contractible, in fact not even connected: A describes all Weierstrass equations on a ring,

even non-isomorphic ones, not just how to get to others from a fixed choice of curve. So if

we want to get anything close to this we must give up the expectation that this universal

spectrum can itself be elliptic. And indeed, among ring spectra without assuming even

periodicity, we can find something resembling a universal parameterized elliptic spectrum:

Theorem 13. ([1], 14.5) There exists a commutative ring spectrum tmf such that

(π0(tmf ∧ Y ), π0(tmf ∧ Y ∧2)) ∼= (A,Γ)

Exciting as this may be, it would be really nice if the canonical maps π0(tmf ∧ Y )→
π0(E ∧ Y ) were induced by canonical maps tmf → E, making tmf truly universal among

elliptic spectra. This as it turns out is too much to ask, but the rest of these notes are

devoted to showing that it almost works if we restrict to rings containing 1
6 . This suffices for

many chromatic homotopy theory applications as a universal model for behavior of spectra

at height 2, and the difficulties that arise when 3 or 2 is not invertible are interesting

in their own right, but rather more complicated than the computation in the following

sections.
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7. Gradings and the Spectral Sequence

For the computations to come, we will need to move into the setting of bigraded rings.

Recall there is a complex of rings C•(A,Γ) associated to any Hopf algebra (A,Γ) by means

of the corresponding cosimplicial ring, and without any extra work (the same arguments

apply) we can restate the results of the previous section in terms of cobar complexes:

Proposition 14. For (E,C) an elliptic spectrum, the cosimplicial ring π0(E ∧ Y ∧(•+1))

forms a Hopf algebroid with a canonical map of complexes from C•(A,Γ).

Theorem 15. There exists a commutative ring spectrum tmf such that

C•π0(tmf ∧ Y ∧(•+1)) ∼= C•(A,Γ)

Here we haven’t added anything new, but in both results we can make a stronger

statement using π∗ in place of π0. First however, we must define a graded variant of (A,Γ).

Definition 16. A∗ = A[η, η−1] and Γ∗ = Γ[η, η−1] are graded rings with η in degree 2 and

all of A and Γ in degree 0. To make (A∗,Γ∗) a graded Hopf algebroid (co-groupoid object

in graded rings) we must also specify that s(η) = λ−1η, t(η) = η, and all other structure

maps preserve η.

η represents what is called the invariant 1-form of a curve, which we can loosely think

of in analogy with differential geometry as fixing a metric on a curve, where λ tracks how

a coordinate change resizes with respect to that metric.

Now both of the previous results can be stated in bigraded form replacing π0 with π∗
and (A,Γ) with (A∗,Γ∗):

Proposition 17. For (E,C) an elliptic spectrum, the cosimplicial graded ring π∗(E ∧
Y ∧(•+1)) forms a graded Hopf algebroid with a canonical map of bigraded complexes from

C•(A∗,Γ∗).

Theorem 18. There exists a commutative ring spectrum tmf such that

C•π∗(tmf ∧ Y ∧(•+1)) ∼= C•(A∗,Γ∗)

In this form, the theorem tells us how to compute π∗(tmf) using the Bousfield-Kan

spectral sequence: for a cosimplicial spectrum of the form E ∧ Y ∧(•+1), this sequence of

bigraded complexes has Es,t1 = πt(E ∧ Y ∧(s+1)) and converges to πt−sE. So to compute

π∗tmf , we begin by computing the page Es,t2 = Hs,t(C•(A∗,Γ∗)) (which we abbreviate as

Hs,t(A∗,Γ∗)).
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8. Computing π∗tmf [1
6 ]

We do not compute all of π∗tmf (see [1] chapters 15-19 for a more complete calculation)

but instead focus on π∗tmf [1
6 ] using the Bousfield-Kan spectral sequence, which begins with

finding Es,t2 = Hs,t(A∗[
1
6 ],Γ∗[

1
6 ]). The strategy will be to reduce (A∗[

1
6 ],Γ∗[

1
6 ]) to simpler

algebroids without changing its cohomology. This is made possible by the following “change

of rings” theorem:

Theorem 19. ([1],15.2) If f : (A,Γ) → (A′,Γ′) is a map of Hopf algebroids such that

Γ′ ∼= A′ ⊗f,tA Γ⊗s,fA A′ and there is a map g such that A
s−→ Γ→ A′ ⊗f,tA Γ

g−→ R is faithfully

flat, then f is an isomorphism on cohomology.

Recall that a map A→ R is faithfully flat if it makes its codomain into a flat module

and the functor (R⊗A−) reflects 0. This theorem gives us everything we need to compute

H∗∗(A∗[
1
6 ],Γ∗[

1
6 ]) by showing that both maps in the following diagram are isomorphisms

on cohomology:

(Ā∗[
1
6 ], Γ̄∗[

1
6 ])

(A∗[
1
6 ],Γ∗[

1
6 ]) (C̄∗, C̄∗)

ι

f

Beware that this C̄∗ is named to be analogous to Ā∗, as we will see below when it’s

defined, not to be confused with the scheme C of an elliptic spectrum.

Definition 20. Let Ā∗ = Z[ā1, ā2, ā3, ā4, ā6] be a graded ring with āi in degree 2i, and

Γ̄∗ = Ā∗[r̄, s̄, t̄] with r̄, s̄, t̄ in degrees 4, 2, and 6 respectively.

(Ā∗, Γ̄∗) includes into (A∗,Γ∗) by āi 7→ aiη
i, r̄ 7→ rη2, s̄ 7→ sη, t̄ 7→ tη3. Giving (Ā∗, Γ̄∗)

the Hopf algebroid structure with the same formulas as (A,Γ) just with λ = 1, it is easy to

check that this inclusion is a map of Hopf algebroids. In terms of represented groupoids,

this Hopf algebroid describes the groupoid of curves with transformations that have λ = 1,

or equivalently ones that preserve the invariant 1-form η.

Lemma 21. ([1], 15.7) The change of rings theorem applies to this inclusion f .

Proof. A∗ ∼= Ā∗[η
±], so if A∗ ⊗Ā∗ M = 0, then for all x ∈ M η ⊗ x = 0 implies x = 0

as there is no Ā∗ ∈ Ā∗ − {0} with Ā∗η = 0, so f is faithfully flat. f being faithfully flat is
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enough to satisfy the second condition as

Ā∗
s−→ Γ̄∗ → A∗ ⊗f,tĀ∗ Γ̄∗

id⊗ε−−−→ A∗ ⊗Ā∗ Ā∗ ∼= A∗ = f

Now for the first condition we observe that

A∗ ⊗f,tĀ∗ Γ̄∗ ⊗s,fĀ∗ A∗
t⊗f⊗s−−−−→ Γ∗

is an isomorphism since it sends η⊗ 1⊗ 1 to η and 1⊗ 1⊗ η to λ−1η, so the image hits all

of ai, r, s, t, λ, η and it is injective on the two differing copies of η (and clearly injective on

everything else which is just Γ̄∗). ut

We now have by the change of rings theorem that H∗∗(A∗,Γ∗) ∼= H∗∗(Ā∗, Γ̄∗), a useful

reduction even when 6 is not inverted. The next step is to show that the change of rings

theorem applies to a map expressing the canonical form of Weierstrass equations in rings

containing 1
6 .

So far we have used the most general form of Weierstrass equations, but in most

rings the equations can be simplified. If 1/2 ∈ A, we can change coordinates from any

equation given by (a1, a2, a3, a4, a6) to the form (0, 1
4b2, 0,

1
2b4x,

1
4b6) where b2 = 4a2 + a2

1,

b4 = 2a4 + a1a3, and b6 = 4a6 + a2
3. Even better, if 1/6 ∈ A then there is a further

coordinate change to an equation given by (0, 0, 0,−c4/48,−c6/864) for c4 = b22 − 24b4
and c6 = −b32 + 36b2b4 − 216b6. One can check that this coordinate change is given (non-

canonically) by r = 1
3a2 + 1

12a
2
1 s = 1

2a1, t = 1
2a3, λ = 1.

This last parameterization is nearly unique. By inspecting the formulas for a′i above

we see that for a coordinate transformation between Weierstrass equations of this form,

a1 = a′1 = 0 tells us that s = 0. a2 = a′2 = 0 further implies that r = 0, and a3 = a′3 = 0

mandates that t is also 0, so such transformations only depend on λ. We can then define

a Hopf algebroid representing the groupoids of these equations and transformations with

λ = 1, which are all discrete.

Definition 22. Let C̄∗ = Z[1
6 , c̄4, c̄6] with c̄i in degree 2i, and note that (C̄∗, C̄∗) with all

structure maps the identity forms a (discrete) Hopf algebroid.

We now consider the map f : (Ā∗[
1
6 ], Γ̄∗[

1
6 ]) → (C̄∗, C̄∗) sending ā1, ā2, ā3, r̄, s̄, t̄ to 0,

ā4 to −c̄4/48, and ā6 to −c̄6/864.

Lemma 23. ([1], 15.13) The change of rings theorem applies to f .

Proof.

C̄∗ ⊗f,tĀ∗ Γ̄∗ ⊗s,fĀ∗ C̄∗
∼= C̄∗
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as ā1, ā2, ā3, r̄, s̄, t̄ ∈ Γ̄∗ all go to zero in the ring on the left (trivially for āi, i = 1, 2, 3, and

for s̄ we have 1 ⊗ āi ⊗ 1 = 1 ⊗ āi′ ⊗ 1 = 0 so 1 ⊗ s̄ ⊗ 1 = 1 ⊗ 1
2(a′1 − a1) ⊗ 1, likewise for

r̄, t̄). For the second condition, we want to define g such that the following composite is

the identity (which is faithfully flat):

Ā∗
s−→ Γ̄∗ → C̄∗ ⊗f,tĀ∗ Γ̄∗

g−→ Ā∗

The ring C̄∗ ⊗f,tĀ∗ Γ̄∗ represents coordinate transformations with codomain of the form

represented by C. The left map from Ā∗ represents the domain parameters of those coor-

dinate transformations, so specifying g amounts to identifying naturally for each general

Weierstrass equation a coordinate change (with λ = 1) into the form represented by C.

Such a coordinate transformation is given above by r̄ 7→ 1
3 ā2 + 1

12 ā1
2 s̄ 7→ 1

2 ā1, t̄ 7→ 1
2 ā3.

So the change of rings theorem applies. ut

Having verified that both maps relating (Ā∗[
1
6 ], Γ̄∗[

1
6 ]) to (A∗[

1
6 ],Γ∗[

1
6 ]) and (C̄∗, C̄∗)

induce isomorphisms on cohomology, we can now prove the following:

Proposition 24. Hs,∗(A∗[
1
6 ],Γ∗[

1
6 ]) ∼= Hs,∗(C̄∗, C̄∗) ∼= Z[1

6 , c̄4, c̄6] for s = 0 (|ci| = 2i) and

is 0 for s > 0.

Proof. The first isomorphism follows from the lemmas above and the change of rings

theorem. For the second, observe that the cosimplicial graded ring of (C̄∗, C̄∗) has the form

C̄∗ C̄∗ C̄∗ · · ·

with all maps the identity, so by Dold-Kan the associated complex has differentials alter-

nating between 0 and the identity, starting with 0, and as such H0,∗(A∗[
1
6 ],Γ∗[

1
6 ]) ∼= C̄∗

and all other cohomology is 0. ut

In conclusion, this bigraded complex has all differentials zero, so the spectral sequence

collapses at the E2 page, completing the proof of the following.

Theorem 25. π∗tmf [1
6 ] ∼= Z[1

6 , c̄4, c̄6].

Z[1
6 , c̄4, c̄6] hosts the universal Weierstrass curve among those over rings containing 1

6 .

This makes tmf [1
6 ] come quite close to realizing the universal property we were hoping for:

for any elliptic spectrum (E,C) over such a ring with C a Weierstrass curve, we have a

map π∗tmf → π∗E canonical up to rescaling by λ.
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9. Conclusion

Topological modular forms are a rich subject at the interface of algebraic geometry

and homotopy theory, also with connections to number theory not covered here, which was

for a long time the state of the art machinery for chromatic homotopy theory. There is

so much beautiful mathematics that goes into defining tmf and placing it in a broader

context that it would be impossible to fit into anything less than an entire book (which

has been done), but I hope that in surveying the path taken in [1] with some additional

narrative building I have provided an accessible and self contained introduction.

Here we didn’t cover the construction of the spectrum tmf , other variants of tmf with

slightly different universal properties, details of how cohomology theories are filtered by

heights, other calculations one can do with tmf and what they mean, classical modular

forms, and so much more that one can continue to learn about in the subject. Defining

tmf by the kind of universality property we would like it to have, however, is enough

to go even further in computations than we did here, and expresses an idea of the role

the spectrum plays without the heavier algebraic geometry machinery that goes into its

concrete definition. As someone primarily interested in the homotopy theoretic side of

things, I found this approach very helpful.
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