
Homotopy Type Theory

Brandon Shapiro

Cornell Logic Seminar

Homotopy type theory is, at its core, an alternative foundational system for mathemat-

ics built to more naturally describe mathematical objects exhibiting “higher dimensional

structure” or relating to each other via weaker notions of equivalence than identity or iso-

morphism. These sorts of rich structures have been studied for decades by mathematicians

including homotopy theorists and algebraic geometers, but using complicated techniques

that suggest set theoretic and topological foundations are not ideal for expressing and

reasoning about such concepts.

In homotopy type theory, the fundamental objects are types, which seamlessly play

the role of both spaces and logical propositions. The axioms of these types encode both

homotopical and logical structure, allowing them to serve as both theory and metatheory

in interesting ways. For instance, given two types A and B, there is a type which can be

regarded as containing either homotopy equivalences between A and B or proofs that A

and B are homotopy equivalent.

The main thematic difference between type theory and classical mathematics is that

propositions in the former are regarded as types, which come equipped with all of the

axiomatic structure of the types they refer to. A proof of a proposition is, in type theory,

a first class mathematical object, which can be compared and contrasted with other proofs

of the same proposition. This perspective is most interesting when applied to equality of

elements within a type, where spatial structure arises by regarding proofs that two elements

are equal as paths between those elements.

Even in classical mathematics however, homotopy type theory provides a syntax for

reasoning about spaces in a particularly intuitive way that translates into proofs in a

variety of different settings at once. Homotopy theorists often bounce between point-set,

combinatorial, and algebraic presentations of abstract spaces. Homotopy type theory uses

algebraic descriptions of spaces to state and prove results across a variety of combinatorial

and point-set presentations.

1. Type Theory

This section follows chapter 1 in The Book. The axioms given here are consistent

(relative to ZFC, more on this later), but redundant as many of the type constructors in

– 2 –

this section could be defined in terms of the others. We do modify the order in which

different type constructors are presented from the book, which begins with more compli-

cated constructors in order to give more detailed descriptions of those that follow than

we will provide in these notes, so we instead present the standard constructors in order of

increasing complication.

1.1. Judgments and Types

Types are, like sets, defined by a list of axioms. These axioms suffice to describe both

the objects of study (types) and the methods for reasoning about them (also types). The

fundamental syntactic atom of type theory is, for A a type, the judgment

a : A

where a judgment is not a proposition but rather a definition of the element a of type

A. Everything in type theory belongs to a type, and it is usually helpful to assume that

every element belongs to a unique type, though we will have to stray from this to define

dependent types. a : A defines (or in some cases assumes) the element a as having type

A, and can also be seen as a proof that the type A has an element. When we regard

propositions as types, a : A will be taken as providing a proof of A. As a judgment and not

a proposition, however, a : A is not something that can be proven or disproven; it simply

specifies an element a with type A.

We also have another judgment, written a ≡ b : A, for when a and b, both elements

of type A, are definitionally equal. Definitional equality is basically a metatheoretical con-

venience for expressing when two things are the same by definition and can be substituted

for one another in type theoretic statements without using any type theory axioms. This

differs from set theory where “a = b” is a proposition that can be proven true or false by

axioms and deduction rules, whereas in type theory we have a ≡ b only when one or the

other is introduced as being the same as the first. Axioms can, however, be used to obtain

p : a = b an element of the type a = b, the main innovation of this foundational system.

Since everything has a type, this includes the types themselves. We will define new

types A by the judgment A : U , where U is called the universe type whose elements are

types. Most of the following axioms for type theory can be interpreted as providing an

inductive definition of U . The type of U is typically taken to be a larger universe U1

fitting into a hierarchy of successive universes. While it is simpler to consider each type

as belonging to a unique universe in the hierarchy, we will want to consider functions of

– 3 –

the form A→ U for A : U , so in these cases it becomes convenient to allow types in U to

also be treated as types in U1. The intricacies of these conventions are however beyond the

scope of these notes, where we will freely move between different universes in the hierarchy

without further comment.

1.2. Functions and Implication

So far we have only introduced syntax indicating that types are “things of type U

which may have elements,” which does not tell us much about how to use them. Like sets,

however, there can also be functions between types, defined by the following axioms:

Axiom.
A : U B : U

A→ B : U
1.1

a : A ` f(a) : B

f : A→ B
1.2

f : A→ B a : A

f(a) : B
1.3

In axioms 1.2 and 1.3 we also assume A,B : U (shorthand for A : U B : U), but we

will omit these assumptions when they are clear from context. The “cut”-notation here,

meaning some number of premises placed above a line with a conclusion below the line, is

a standard scheme for specifying axioms.

The first axiom (1.1) defines a new type A → B for any types A and B. The third

axiom (1.3) provides that an element of the type A→ B can be “applied” (like a function)

to an element in A to get an element of B. The second axiom (1.2) uses a “turnstile” `,

and has the following meaning: if for an arbitrary element a : A one can form an expression

f(a) that describes an element of B, then this assignment specifies a function f : A→ B.

However, while it is important to be able to construct new functions, we will rarely use

this axiom as most types are defined not by specifying all of their elements, but rather by

describing the data necessary to give functions out of them, as we will see in the axioms

that follow.

Furthermore, using a slight abuse of notation, the function f obtained from axiom 1.2

when applied to an element a : A as in axiom 1.3 yields the same expression f(a) used in

defining f . Similarly, given f : A → B, the function constructed from axiom 1.2 by the

assignment g(a) :≡ f(a) yields a function g with g ≡ f . These interactions amount to the

uniqueness principle for functions, which asserts that they are definitionally determined by

their values on all elements of the domain type A. Later on, we will introduce an additional

axiom that provides a similar statement using equality types.

For example, given an element b : B, we can define constb : A → B by a : A ` b : B,

– 4 –

with f(a) ≡ b for all a : A. If A were a type with an operation +, which we will discuss

later, we could similarly define a function f by f(a) :≡ (a + a) + a. There is also always

an identity function idA : A → A defined by f(a) ≡ a. Given f : A → B and g : B → C

we can define their composite gf : A→ C by gf(a) ≡ g(f(a)).

Like all of our basic type constructors, A→ B has a logical interpretation as well. As

suggested by the notation, if A and B are regarded as propositions, A → B corresponds

to “A implies B.” We can interpret a : A as a proof of A, and a function f : A → B

takes that proof and provides a proof f(b) : B of B, just like implication in classical logic.

Axiom 1.3 corresponds to modus ponens and axiom 1.2 corresponds to proving A→ B by

deducing B from A constructively (as in, explicitly using the given proof of A to prove B).

1.3. Unit and Empty Types as Truth Values

Before defining several more ways of constructing new types from existing ones, we

provide two new types as base cases. The first is the unit type 1, characterized by the

property of having an element which behaves as if it is unique. We will later describe the

precise sense in which this element is unique.

Axiom.

1 : U
2.1

? : 1
2.2

A : U a : A

ā : 1→ A ā(?) ≡ a
2.3

As with the axioms for function types, these axioms follow the scheme of defining a

new type, specifying how to construct elements in it (and accordingly functions into it),

and specifying how to construct functions out of it. In this case, the type 1 has an element

? by axiom 2.2, and by axiom 2.3 functions out of 1 can be constructed by only defining

their value on that element, which is like asserting that ? is the unique element of 1.

Axiom 2.3 also provides a “computation rule” that we did not include for function types

for simplicity of notation, though we did discuss it following the function type axioms. This

rule describes how the constructed functions out of 1 act on the element ?. This could be

derived from axiom 1.2 if we knew that ? is the unique element of 1, but it takes the first

conclusion of axiom 2.3 to know anything like this, and even then it does not explicitly

guarantee that ? is unique. We will see that in fact, we can only show syntactically that ?

is unique up to propositional equality, but not definitional equality. Semantically however,

the type 1 is often modeled by a mathematical object in which ? is the unique element.

– 5 –

Axiom.

0 : U
3.1

A : U

ιA : 0→ A
3.3

0 is called the empty type, and as suggested by its lack of any specified elements (which

would be axiom 3.2) and existence of a function out of it into any type, it has no elements.

As such there is no need for a computation rule in axiom 3.3.

From the perspective of logic, 1 and 0 correspond to the propositions True and False.

1 has not just a proof but a canonical proof (in the sense that one can construct a proof

that any proof of 1 is equal to ?), and having no elements 0 has no proof.

As further evidence for the validity of this correspondence, note that for any type A

there are canonical functions !A : A→ 1, obtained from axiom 1.2 by setting !A(a) = ?, as

well as ιA : 0→ A. These functions correspond with the classical implications of anything

by False and of True by anything. There is a function 1 → A precisely when A has an

element (aka proof), and a function A → 0 only when A has no elements. Accordingly,

∼ A :≡ A→ 0 is the type theoretic analogue of negation.

This is where type theory is first seen to be naturally constructive. With logical

propositions replaced by types, many classical axioms/theorems of logic arise naturally

from the axioms, such as modus ponens above or propositions like A→ 1. These classical

notions are constructive in the sense that if given a proof (sometimes called a witness) of

each of the premises, like f : A→ B and a : A, one can construct a proof of the conclusion,

like f(a) : B.

A famously nonconstructive proposition in classical logic is that ∼∼ A → A. The

converse is constructive, as given a : A we can construct an element of (A → 0) → 0 by

sending each f in (A → 0 to f(a) : 0. But given a function (A → 0) → 0 there is no way

to extract an element of A.

Part of the richness of this constructive approach to logic is that propositions are not

simply true or false, but are rather collections of all their possible proofs, some of which

can be proven equal but potentially in different ways, some of which can be proven equal,

and so on. This nested structure of proofs of equality of proofs of equality of (...) endows

a type with the higher dimensional structure of a space, which we discuss further below.

– 6 –

1.4. Product and Sum Types

Now that we have a basic sense of what type theory axioms look like and how to work

with them, we introduce two new ways of constructing new types, which correspond to

product and coproduct in spaces, or conjunction and disjunction (and,or) in logic.

Axiom.

A : U B : U

A×B : U
4.1

a : A b : B

(a, b) : A×B
4.2

f : A→ (B → C)

f̄ : A×B → C f̄((a, b)) ≡ f(a)(b)
4.3

Any two types have a product A×B, whose elements are contstructed from an element

of A along with an element of B. Axiom 4.3, the elimination rule for products, describes

functions out of products in terms of functions on each component. Classically in sets

(and sufficiently nice spaces) a function out of a product is the same as a function from

the first component into functions out of the second component, corresponding via the

computation rule in the second conclusion of axiom 4.3. From the functions A→ (B → A)

sending a : A to consta and A→ (B → B) sending a : A to idB for all a, we get functions

pr1 : A×B → A with pr1((a, b)) ≡ a and pr2 : A×B → B with pr2((a, b)) ≡ b. This type

corresponds to conjunction (∧) in logic.

Axiom.
A : U B : U

A+B : U
5.1

a : A

inl(a) : A+B
5.2a

b : B

inr(b) : A+B
5.2b

f : A→ C g : B → C

〈f, g〉 : A+B → C 〈f, g〉(inl(a)) ≡ f(a) 〈f, g〉(inr(b)) ≡ g(b)
5.3

Elements of the sum type A + B are constructed either as an element of A or an

element of B, and these are all of the elements in the sense that a function A+B → C can

be specified on only the elements of A and B. This is also an example of a type construction

with multiple different constructors for elements. It is evident from these axioms that + of

types behaves like disjunction (∨) in logic, but with the constructive caveat that a proof

of A+B does in fact specify either a proof of A or a proof of B.

1.5. Dependent Type Theory

So far, we have constructed enough types to do constructive propositional logic: we

have 0, 1,→,∧,∨,∼ all behaving as they should in a constructive setting, atoms of the form

A : U , and proofs of the form a : A, with appropriate rules for forming proofs of or from

– 7 –

the various type constructions. But propositional logic isn’t strong enough to do most

classical mathematics. Dependent type theory adds additional constructions resembling

those of first order logic, but with types again assuming multiple roles, including that

of the relations and the indexing set. Specifically, dependent products/sums look like

iterated products/sums indexed over a type, and correspond to universal and existential

quantification.

This is the setting, mentioned at the beginning of the section, where the universe

must be treated at the same level as types it contains. In first order logic, universal

and existential quantification assert that for a family of propositions which depend on a

variable, respectively all or at least one of those propositions is true. We replace those

propositions with types, depending on an element of an indexing type, so that a family of

types is described by a function B : A→ U , called a type family. For each a : A, B(x) is a

type, and the dependent product and sum describe respectively a family of elements of all

those types and an element of a specific one of those types, as follows.

Axiom.

A : U B : A→ U

Πx:AB(x) : U
6.1

x : A ` bx : B(x)

b : Πx:AB(x)
6.2

b : Πx:AB(x) a : A

ba : B(a)
6.3

An element of Πx:AB(x) thus amounts to an element of B(x) for all x : A. Logically,

an element of Πx:AB(x) can be seen as a proof that “for all x in A, B(x) holds” via a proof

of each B(x).

Note that these axioms look a lot like those for function types, including the abuse of

notation indicating that the operations between types in axioms 6.2 and 6.3 are inverse to

each other. This analogy becomes precise when the type family B : A → U is constant

at a single type (B), in which case an element of Πa:AB is simply a function A → B.

Dependent product types are often thought of as function types where the codomain of the

function is allowed to depend on the element it is applied to in the domain. In dependent

type theory, all of the axioms for functions out of newly constructed types (like axioms n.3

above) are replaced with axioms for such dependent functions out of the type, which look

similar and we won’t write them out here. However, we state below the dependent version

of that axiom for dependent sums, and in the next section the “path induction” axiom for

identity types cannot be stated without dependent products.

Axiom.

A : U B : A→ U

Σx:AB(x) : U
7.1

a : A b : B(a)

(a, b) : Σx:AB(x)
7.2

C : (Σx:AB(x))→ U x : A, y : B(x) ` zx,y : C((x, y))

z : Πp:ΣAB C(p)
7.3

– 8 –

An element of Σx:AB(x) is a pair (a, b) with a : A and b : B(a). Logically this is

interpreted as a constructive variant of existential quantification, as it contains proofs of

B(a) for some a, but the specific choice of a must be specified, more than the mere assertion

that there is such an a. A nonconstructive version of this that behaves more like classical

existential quantification can be defined using propositional truncation, which uses higher

inductive types.

Where dependent products behave like functions with the codomain type dependent

on elements in the domain, dependent sums behave like pairs with the type of the sec-

ond component dependent on elements in the type of the first component. When B is a

constant type family, an element of Σx:AB(x) amounts to a pair in A × B. Axiom 7.3

constructs dependent functions out of Σx:AB(x), but choosing C to be constant reduces

it to constructing ordinary functions out of Σx:AB(x). For instance, if C is constant at A,

assigning zx,y :≡ x : A defines the first projection pr1 : Σx:AB(x)→ A. If C sends (x, y) to

B(x), then assigning zx,y :≡ y : B(x) defines the second projection pr2 : ΠΣx:AB(x)B(x), a

dependent function.

By now, we have the tools to fully imitate constructive first order logic using our type

theory. However, we have yet to introduce any interesting propositions to prove. In the

next section we introduce identity types and in the following section the type of natural

numbers, after which we can construct elements of types like

Π
n:N
Σ
k:N

(n = k + k) + (n = k + k + 1)

where the + used in k+k is defined for natural numbers and the + between parenthesized

blocks is the sum of types. An element of this type would be a proof that every natural

number is either even or odd.

1.6. Axioms So Far

For convenience we include here all of the axioms given thus far:

– 9 –

Axiom.
A : U B : U

A→ B : U
1.1

a : A ` f(a) : B

f : A→ B
1.2

f : A→ B a : A

f(a) : B
1.3

Axiom.

1 : U
2.1

? : 1
2.2

A : U a : A

ā : 1→ A ā(?) ≡ a
2.3

Axiom.

0 : U
3.1

A : U

ιA : 0→ A
3.3

Axiom.

A : U B : U

A×B : U
4.1

a : A b : B

(a, b) : A×B
4.2

f : A→ (B → C)

f̄ : A×B → C f̄((a, b)) ≡ f(a)(b)
4.3

Axiom.
A : U B : U

A+B : U
5.1

a : A

inl(a) : A+B
5.2a

b : B

inr(b) : A+B
5.2b

f : A→ C g : B → C

〈f, g〉 : A+B → C 〈f, g〉(inl(a)) ≡ f(a) 〈f, g〉(inr(b)) ≡ g(b)
5.3

Axiom.

A : U B : A→ U

Πx:AB(x) : U
6.1

x : A ` bx : B(x)

b : Πx:AB(x)
6.2

b : Πx:AB(x) a : A

ba : B(a)
6.3

Axiom.

A : U B : A→ U

Σx:AB(x) : U
7.1

a : A b : B(a)

(a, b) : Σx:AB(x)
7.2

C : (Σx:AB(x))→ U x : A, y : B(x) ` zx,y : C((x, y))

z : Πp:ΣAB C(p)
7.3

2. Propositional Equality

This section follows (roughly) 1.12-2.12 in The Book.

Thus far, all of the type theory we have covered could be modeled by sets, where

the types are interpreted as sets and all of the constructions in the previous section are

treated as their set theoretic analogues. The most basic propositions about those sets are

equalities x = y between two sets or elements, and in type theory we treat propositions

as types. From the perspective of sets, either x and y are equal or they are not, so a

type x = y should either be empty or have a canonical element. Homotopy type theory

arises from dropping the assumption that elements of the type x = y have to be unique,

– 10 –

while imposing conditions that allow elements of this identity type between x and y to be

interpreted as paths from x to y, making the ambient type behave like a space.

Many important properties of identity types can be proven from the axioms below,

but the essential aspects of these types are that only two elements of the same type can

be equal, every element of a type is equal to itself in a canonical way, and these reflexivity

paths generate all other paths in a precise sense.

Axiom.

A : U a : A b : A

a =A b : U
8.1

a : A

reflA : a =A a
8.2

C : (Σa,b:A a = b)→ U c : Πa:AC(a, a, refla)

d : Πa,b:AΠp:a=bC(a, b, p) d(a, a, refla) = c(a)
8.3

Here Πa,b:A is convenient notation for Πa:AΠb:A, and we write a = b for a =A b

when the ambient type is clear from context. In axiom 8.3, C is a family of types in U

consisting of a type C(a, b, p) for every path p from a to b, and we note that a family

(Σa,b:A a = b)→ U is the same as a family Πa,b:A(a = b→ U).

The axiom is called the path induction principle, which says that given a proposition

indexed by all paths in A, if it can be proven for just the reflexivity paths refla for all

a : A, then it is proven for all paths. This only works when C varies over all paths in

A, and would not work for a single identity type in isolation like C : a = b → U . This

may seem too strong; after all, in a space most paths are not the constant paths that the

reflexivities corresponds to. But in a space X, the path space XI is homotopy equivalent

to X, as any path can be contracted back to the constant path at its first endpoint.

Path induction lets us do proofs by “induction on paths”, where any path variable

universally quantified over (including quantifying over its endpoints) can be assumed to be

a reflexivity path without loss of generality. We do several of these sorts of proofs below.

In these proofs, we use the special case of the induction principle that says to provide an

element of Πa,b:A a = b→ C(a, b) it suffices to give an element of Πa:AC(a, a).

2.1. Groupoid Structure

One would hope that when interpreting equality between elements as a type, it still

exhibits familial properties, like the axioms of an equivalence relation. Already from axiom

8.2 we have reflexivity: refl(−) : Πa:A a =A a. Symmetry and transitivity are great

examples of how to use path induction.

– 11 –

Proposition 1. (Symmetry)

(−)−1 : Π
a,b:A

a = b→ b = a

Proof. By path induction, we can assume p : a = b is refla so the proof reduces to a

proof of Πa:A a = a, which is given by refl(−). ut

Proposition 2. (Transitivity)

(−;−) : Π
a,b,c:A

a = b→ (b = c→ a = c)

Proof. As the type a = b does not depend on c we can rewrite this type as Πa,b:A a =

b → Πc:A(b = c → a = c), then by path induction assume that p : a = b is refla. This

reduces the proof to Πa:AΠc:A a = c→ a = c, at which point we could use the identity on

a = c for all a, c. However, to illustrate a common technique involving path induction, we

instead apply it again to assume that q : a→ c is refla, reducing the proof to Πa:A a = a,

provided again by refl(−). In other words, using path induction twice it suffices to define

refla; refla :≡ refla. ut

These proofs construct composites and inverses of paths in a type A generated by

trivial composites and inverses of the reflexivity paths. This shows that propositional

equality forms an equivalence relation on the elements of a type (if they were to form a

set), but also provides algebraic choices for the composites and inverses. These operations,

and the identity paths provided by refl, satisfy the axioms of a groupoid up to propositional

equality.

Definition 3. A groupoid consists of

• a collection of objects

• for any two such objects a and b, a set Hom(a, b) of morphisms (also called arrows

or maps)

• an “identity” morphism ida ∈ Hom(a, a) for each object a

• a “composition” operation (−;−) : Hom(a, b)×Hom(b, c)→ Hom(a, c) for all triples

of objects a, b, c

• an “inverse” operation (−)−1 : Hom(a, b)→ Hom(b, a)

– 12 –

satisfying the equations ida; f = f = f ; idb, f ; f−1 = ida, and f−1; f = idb for f ∈
Hom(a, b), along with (f ; g);h = f ; (g;h) for f ∈ Hom(a, b), g ∈ Hom(b, c), h ∈ Hom(c, d)

(in these equations “=” refers to equality in sets).

For intuition, a groupoid can be thought of in a number of different manners:

• A group where the elements are arrows pointing from one object to another and only

successive arrows can be multiplied

• A category in which every morphism has an inverse

• An equivalence relation where two elements can be related in more than one way

and reflexivity/symmetry/transitivity are constructive: for instance given a way of

relating a and b symmetry picks a particular way to relate b and a. The equations in

the definitions are to make sure these witnesses to reflexivity/symmetry/transitivity

are “coherent” in some sense.

So how do types relate to groupoids? Groupoids are defined above using set theory,

so until we are able to talk about sets in our type theory there is no reason to expect an

exact correspondence, but types do behave very much like “weak higher groupoids”. For

instance, we have the following equations:

Proposition 4.

unitl : Π
a,b:A

Π
p:a=b

refla; p = p unitr : Π
a,b:A

Π
p:a=b

p; reflb = p

invl : Π
a,b:A

Π
p:a=b

p; p−1 = refla invr : Π
a,b:A

Π
p:a=b

p−1; p = reflb

assoc : Π
a,b,c,d:A

Π
p:a=b

Π
q:b=c

Π
r:c=d

(p; q); r = p; (q; r)

Proof. All of these proofs use path induction to assume p is refla (as are q and r by

successive appeals to path induction). Given that assumption, both sides of all five equa-

tions above are definitionally equal to refla, so it suffices to give reflrefla : refla = refla.

For instance in the last equation, assoc is induced by reflrefla : (refla; refla); refla =

refla; (refla; refla), which is correctly typed as both (refla; refla); refla ≡ refla and

refla; (refla; refla) ≡ refla. ut

While these elements can be interpreted as proofs of the corresponding equations

in the definition of a groupoid, they only show the equations hold under propositional

– 13 –

equality; in the spatial interpretation, this amounts to a “path of paths” from (p; q); r to

p; (q; r) rather than an actual equality of the two. This is consistent with how composition

of paths works in topology, and suggests that the groupoid laws for 1-dimensional paths

only hold up to 2-dimensional paths as witnesses. Those 2-dimensional paths then satisfy

additional “coherence equations” again only up to higher dimensional paths induced from

path induction by the constant n-dimensional path reflrefl···refla
, and the process continues

infinitely.

To complicate matters even further, the types a = b for a, b : A have their own

identity types p =a=b q of paths between the paths p and q (themselves paths from a to

b for fixed a, b). These higher paths also have composition and inverses and all of the

groupoid structure proven for general types above. The structure consisting of a collection

of cells in each dimension along with identity, composition, and inverse operations along

with higher dimensional cells witnessing the groupoid laws (which need not hold strictly) is

called a weak ω-groupoid. The axioms for types presented here suggests that a type and all

of its nested identity types behave like a weak ω groupoid, which is classically considered an

algebraic model for the homotopy information of a space (via the “homotopy hypothesis”

of Grothendieck).

Functions between types preserve the groupoid structure, again by path induction:

Proposition 5.

(−)∗ : Π
f :A→B

Π
a,b:A

(a =A b)→ (f(a) =B f(b))

preserves refl : Π
f :A→B

Π
a:A

f∗(refla) = reflf(a)

preserves comp : Π
f :A→B

Π
a,b,c:A

Π
p:a=Ab

Π
q:b=Ac

f∗(p; q) =B f∗(p); f∗(q)

preserves inv : Π
f :A→B

Π
a,b:A

Π
p:a=Ab

f∗(p
−1) = f∗(p)

−1

Proof. For the action of f on paths, by path induction it suffices to define f∗(refla) :≡
reflf(a). This defines preserves − refl without using path induction as the equation it

witnesses is a definitional equality so reflrefla is a complete definition. Path induction then

reduces preserves− comp to reflreflf(a) : reflf(a) = reflf(a); reflf(a) and preserves− inv
to reflreflf(a) : reflf(a) = refl−1

f(a). ut

From the perspective of spaces, “preserving the groupoid structure” corresponds to

continuity. Functions preserve paths, as well as paths between those paths since the func-

tions (a =A b) → (f(a) =B f(b)) also preserve groupoid structure. They also respect the

– 14 –

concatenation and reversal structure of paths. While this is not quite the general definition

of topological continuity, for spaces built by gluing together disks in various dimensions

(like CW-complexes) it is sufficient, and all of our types correspond to spaces of that sort.

2.2. Homotopies, Function Extensioinality, and Univalence

In set theory, two functions A→ B are equal when they agree on every element of A.

In homotopy type theory, a similar relation can be defined between functions, where now

we need a choice of equality f(x) = g(x) for all x : A.

Definition 6. For functions f, g : A→ B, the type of homotopies from f to g is

f ∼ g :≡ Π
x:A

f(x) =B g(x)

While logically this reads as “for all x : A we have f and g agree on x,” when equalities

are interpreted as paths it resembles an A-indexed family of paths in B, which is precisely

how homotopies are defined between functions of spaces.

This also lets us define when a function is a homotopy equivalence:

Definition 7. For f : A→ B, we define the type

isEquiv(f) :≡ (Σ
g:B→A

fg ∼ idB)× (Σ
h:B→A

hf ∼ idA)

An element of isEquiv looks like a pair of functions g, h : B → A and homotopies

fg ∼ idB and hf ∼ idA. If g and h were the same function, this would correspond exactly

to the standard definition of a homotopy equivalence of spaces. This definition is equivalent

however, and is a nicer type for reasons discussed later. The type isEquiv(f) serves as both

the proposition that f is a homotopy equivalence, and the type of possible witnesses g, h

to f being a homotopy equivalence. We can now define a type of homotopy equivalences

from A to B.

Definition 8. For types A and B, the type of homotopy equivalences between them is

A ' B :≡ Σ
f :A→B

isEquiv(f)

An element of A ' B consists of a function f and a proof that f is a homotopy

equivalence, which consists of the data discussed above.

– 15 –

Homotopy equivalence provides a notion of equivalence for types, which allows us to

begin characterizing the identity types in the types arising from the basic constructors in

the first section. For instance, the following axiom asserts that two functions are considered

equal (by an element of the type f = g) precisely when they are homotopic (via a homotopy

in f ∼ g).

Axiom. (Function Extensionality) For types A,B : U and f, g : A→ B,

(f =A→B g) ' (f ∼ g)

Function extensionality imposes that, up to propositional equality, a path between two

functions is precisely a homotopy between them, a reasonable notion from the perspective

of topology, and that two functions are equal when they agree up to propositional equality

on every element, a reasonable notion from the perspective of set theory. The types f = g

and f ∼ g are here related only by homotopy equivalence, but the next axiom asserts that

this is exactly the right way to compare two types.

Axiom. (Univalence) For types A,B : U , (A =U B) ' (A ' B).

Univalence is the foundational axiom of homotopy type theory, and makes it so that

homotopy equivalent types are equal. This means, among other things, that anything true

of a type A is also true of any homotopy equivalent type B, so all statements in this type

theory are in a sense “up to homotopy.” In non-homotopical mathematics, it amounts

to something like “isomorphic structures are equal,” and similarly suggests that anything

definable in the theory can transfer from one structure to any other isomorphic one.

Univalence also tells us that the characterization of identity types in A → B using

homotopy equivalence also holds using equality, which looks like (f = g) = (f ∼ g). Addi-

tionally, function extensionality can be proven using univalence and the previous axioms.

2.3. Equality in Basic Type Constructors

While these first characterizations of identity types required an additional axiom, the

remaining type constructors can be characterized as a consequence of the existing axioms.

For the type constructors 0, 1,×,+, identity types work basically the same way as paths

in the corresponding spaces ∅, ∗, A×B,A tB. Of course, as 0 has no elements it also has

no identity types.

– 16 –

Proposition 9.

Π
a,b:1

((a =1 b) ' 1)

This says that any two elements of 1 are not only equal, but equal in a canonical way.

Furthermore, letting b be ? shows that every element is canonically equal to ?, which is

the precise sense in which ? is unique, since every other element is canonically equal to it.

As a space, this means 1 is contractible as there is a family of paths from any element to

a fixed basepoint ?.

Proposition 10. For A,B : U , we have

Π
x,y:A×B

((x =A×B y) ' ((pr1(x) =A pr1(y))× (pr2(x) =B pr2(y)))

This says that a path between elements of a product amounts to a path between the

projections in each component. For pairs (a, b), (a′, b′) : A×B, a path between the two is

completely determined (up to propositional equality) by a path from a to a′ and a path

from b to b′. This is precisely how paths in a product work in spaces, and also demonstrates

that x = (pr1(x), pr2(x)) using reflexive paths, so every element of A×B is equal to a pair.

Proposition 11. For a, a′ : A and b, b′ : B, we have (inl(a) =A+B inl(a′)) ' (a =A a′),

(inr(b) =A+B inr(b′)) ' (b =B b′), and (inl(a) =A+B inr(b)) ' 0.

This is perhaps less satisfying than the previous characterizations, as it only applies

to the constructors and not general elements of A+B, which illustrates how types defined

by multiple constructors are in many ways more difficult to work with.

For the dependent type constructors we will not discuss their identity types, which are

covered in chapter 2 of The Book. However, as in the definitions of these constructors, their

identity types behave similarly to function and product types, where dependent functions

have a function extensionality axiom implied by univalence, and paths between dependent

pairs look like a path in both components, though in the second component the elements

related by a path must be modified so as to be in the same type.

3. Fancy Type Constructions

The theory of univalent types laid out above emphasizes the ability to interpret types as

spaces, but the actual types definable from the axioms so far are not particularly interesting.

To remedy this, we informally describe a family of axioms that can be added to the type

theory to construct types that model familiar sets and spaces.

– 17 –

3.1. Natural Numbers and Inductive Types

In type theory, it is standard to define the natural numbers in the following fashion,

somewhat analogous to its definition in set theory.

Axiom.

N : U 0N : N S : N→ N
a : A f : N→ (A→ A)

g : N→ A g(0N) ≡ a g(S(n)) ≡ f(n)(g(n))

This definition of N fits a pattern of defining types by induction, where the type is

generated by some number of constructors given by specified elements or functions involving

a type. In this case, there is an element 0N and a successor function, generating a type

with (distinct) elements 0N , S0N , SS0N , ... : N. Here what it means to generate a type is

not particularly clear, but is made precise by the elimination property, which establishes

that given a starting point in A and a means of generating the next term in a sequence in

A, a function out of N is determined. This suggests the sense in which the elements n and

Sn are distinct and all of the elements of N.

There is a general formulation, discussed in chapter 5 of The Book, of what sorts of

constructors are allowed in inductive definitions, which gives rise to a more general axiom

to be added to the type theory.

3.2. Spaces as Higher Inductive Types

In a type theory with identity types, it is desirable to be able to construct types with

control over what their identity types look like. While it is more difficult to formalize than

classical induction (which does not involve identity types) and a general scheme for what it

looks like is an active research topic, in this section we give examples of what some higher

inductive definitions should look like and how they model familiar spaces. All of these

definitions could be added as axioms or derived from a general axiom of higher inductive

generation, and here we list them as examples. We will sometimes overload notation for

elements of these types, but it should not be taken to suggest that any element is actually

a member of more than one type.

Example 12. We define the interval type I inductively from

0I : I 1I : I i : 0I =I 1I

– 18 –

where we have an elimination law given by

a, b : A p : a =A b

p̄ : I → A p̄(0I) ≡ a p̄(1I) ≡ b p̄∗(i) ≡ p

I is then the “free interval” type, generated by two points and a path between them, with

functions out of it picking out the same information in the codomain.

Example 13. We define the circle type S1 inductively from

base : S1 loop : base =S1 base

so S1 contains an element base and a loop loop which we have no reason to expect to be

the same as reflbase, as S1 is freely generated by these constructors. This is captured by

the elimination property

a : A p : a =A a

p̄ : S1 → A p̄(base) ≡ a p̄∗(loop) ≡ p

While S1 should be thought of as a single loop, in fact we have all of loop, reflbase, loop
−1, loop; loop, ... :

base = base, so there are in fact many loops in S1 generated by loop, and it can be proven

that all of those listed are distinct from each other.

Example 14. We define the sphere type S2 inductively from

base : S1 loop2 : reflbase =base=base reflbase

Here loop2 is a 2-dimensional path from the constant path reflbase to itself, which takes the

form of a sphere with basepoint base. Maps out of S2 correspond to 2-loops refla =a=Aa

refla in a type A.

Example 15. The disk D2 is defined inductively from

base : D2 loop : base =D2 base disk : loop =base=D2base reflbase

which loops like S1 but with a 2-dimensional path to the constant path at base filling in the

nontrivial loop. However, as with the 2-sphere, higher inductive types defined explicitly

using 2-dimensional paths are more difficult to work with in practice, so there is a benefit

to an alternative definition using only 1-dimensional paths (the same can be done for S2).

D2 can also be defined inductively from

center : D2 bdry : S1 → D2 filler : Π
x:S1

bdry(x) =D2 center

where by continuity of dependent functions, filler provides not just a path from bdry(base)

to center, but also a continuously varying family of paths to center from around loop

(manifesting as a 2-dimensional path, but without needing to specify one in the definition).

– 19 –

These types model spaces, and homotopy theoretic statements about them can be

formulated and proven, including calculations of their fundamental groups.

4. Logic and Set Theory

In addition to providing foundations in which homotopy theory constructions are more

fundamental, homotopy type theory can also model classical logic and set theory, aided by

the addition of higher inductive constructions.

4.1. Propositional Truncation

While in general types may have many distinct elements, adding proof-relevance to

the logical interpretation of types, classical logic can be modeled by restricting to types

where proofs are unique up to propositional equality. Where generally types can be viewed

as propositions, these types are nothing more than that, and as such are called mere

propositions.

Definition 16. A type A is mere proposition if the following type is inhabited:

isProp(A) :≡ Π
a,b:A

a = b

isProp(A) asserts that all elements in A are equal to each other, and by continuity

of dependent functions (which looks similar to the description of continuity for ordinary

functions given above) these paths are coherent, in the sense that they vary continuously

in a and b and make A into a contractible space when it is nonempty (as in, equivalent to

1).

Mere propositions are meant to behave more faithfully like those in classical logic,

and are closed under most of the type constructors (→, 0, 1,×, Π when all B(x) are mere

propositions) but not + or Σ. Therefore, to do classical logic we need a way of turning a

general type into a mere proposition. Higher inductive types allow us to perform such a

construction.

Definition 17. For any type A, its propositional truncation |A| is defined inductively from:

| − | : A→ |A| contr : Π
x,y:A

|x| =|A| |y|

– 20 –

That is, |A| contains all the elements of A, with coherent paths added between all

pairs of elements making it contractible (if inhabited). |A| is always a mere proposition,

so classical logic can be imitated with |A+B| and |Σx:AB(x)| playing the roles of ∨ and

∃ respectively.

While even among mere propositions the system retains some constructive elements,

we can add additional axioms to impose the structure of classical logic. For instance the

law of excluded middle can be expressed as

LEM : Π
A:U

(isProp(A)→ (A+ ∼ A))

which is consistent with existing axioms. Asserting the more general proposition ΠA:U (A+ ∼
A) is, however, inconsistent with univalence, as an element would have to specify a base-

point for all inhabited types, and that basepoint would not generally be preserved by all

homotopy equivalences, which contradicts continuity of the dependent function from U .

4.2. Sets

We can also define a condition on a type for it to be regarded as a set. Among

spaces, sets are those which are discrete, having no nontrivial paths. From the perspective

of univalence, however, all properties hold only up to homotopy equivalence, so it is not

necessary for a set-like type to have no nontrivial paths, but in order to be homotopy

equivalent to a discrete type there must be no nontrivial loops (in any dimension).

Definition 18. A type A is a set if the following type is inhabited:

isSet(A) :≡ Π
a,b:A

Π
p,q:A

p = q

This immediately eliminates the possibility of nontrivial loops, and higher dimensional

loops are avoided by continuity of dependent functions, making each connected component

of A contractible. As with propositions, we can truncate a type to get a set of its connected

components. This is often called 0-truncation, as sets are those types with no nontrivial

homotopical structure above dimension 0 (points). From this perspective propositional

truncation is (-1)-truncation.

Definition 19. For any type A, its 0-truncation |A|0 is defined inductively from:

| − | : A→ |A|0 Π
a,b:A

Π
p,q:a=Ab

|p| =|a|=|A|0 |b| |q|

where |p| is shorthand for | − |∗(p).

– 21 –

This truncation contains all elements of A, with each identity type made contractible.

As with propositional truncation, nothing is strictly identified as in usual quotient con-

structions in classical math. Instead, paths are added in, only contracting the type up to

homotopy. This is a theme both in homotopy theory and homotopy type theory.

Given this truncation, we can define the homotopy groups of types, which allows these

groups to be computed in the type theory for types such as those above built to model

familiar spaces.

Definition 20. For a type A with a specified element a : A, its first homotopy group is

π1(A, a) :≡ | Π
γ:S1→A

γ(base) = a|0

and higher homotopy groups are defined similarly by replacing S1 with Sn.

π1(A, a) is then the set of connected components of the type of loops in A based at a,

which by function extensionality (ignoring the basepoint condition for simplicity) amounts

to looking at loops up to homotopy, just as the fundamental group as defined for topological

spaces. Many homotopy groups have been computed in this type theory, including the most

basic π1(S1, base) = Z with loop the generator under reflbase, ; and (−)−1.

Lastly, as an illustration of the extent to which type theory can model classical math-

ematics, we can add as an additional axiom an element of the following type, which models

the axiom of choice: Let A be a set, B : A→ U with B(x) a set, and P : (Σx:AB(x))→ U

with P (x, y) a mere proposition. Then the axiom of choice amounts to the following.

AoCA,B,P : (Π
x:A
| Σ
y:B(x)

P (x, y)|)→ | Σ
g:Πx:AB(x)

Π
x:A

P (x, g(x))|

That is, given a family of sets indexed by a set A each equipped with a nonempty

subset, there exists a dependent function picking out an element of each of those subsets.

This would be trivial without the propositional truncations as a proof of nonemptiness of

each subset would come equipped with a choice of element, but with them it resembles the

classical axiom of choice.

5. Models

A detailed discussion of models is beyond the scope of these notes, but we will briefly

describe what a model would look like. All of the type theory presented in these notes

– 22 –

has been syntax, consisting of strings of symbols with rules for their manipulation. The

question “what is a type” has no single answer beyond “anything satisfying these axioms”

in some suitable sense.

These axioms are significantly richer than the theories typically studied in model

theory, so it would be difficult to model them as a set with functions and relations, especially

since types and their elements all have distinct identities, unlike set theory where models

can assume all elements are also sets. As such, the machinery for building models of type

theory take a different approach, where a model of type theory is a category where each

type is modeled by some object in that category. The rules for each type construction are

then translated into conditions for those objects to satisfy in the category.

For instance, function types behave like exponentials in a category, products and sums

like categorical products and coproducts, 0 and 1 like initial and terminal objects, and so

on. An informal motto, which has now been proven in various formulations, is that a

category that models homotopy type theory has the structure of an ∞-topos.

The most significant part of this structure is how identity types are modeled, which

relies on the category having a notion of path object to model the type Σa,b:A a = b. In

spaces, this would look like XI where X is the corresponding space to the type A and I is

the unit interval.

This structure is formally similar to the structure of a model category, which describes

a setting that admits constructions from homotopy theory. As such, most models of ho-

motopy type theory are built from the structure of model categories, particularly ones

containing combinatorial models of spaces like simplicial sets, though there are general

conditions that more general model categories can satisfy that allow them to model univa-

lent type theory.

The existence of a model for homotopy type theory with univalence built from ZFC

foundations demonstrates that the theory is consistent if ZFC is.

6. References

1. Homotopy Type Theory: Univalent Foundations of Mathematics. The Univalent

Foundations Program, Institute for Advanced Study. https://homotopytypetheory.org/book

2. The Simplicial Model of Univalent Foundations (after Voevodsky). Chris Kapulkin

and Peter LeFanu Lumsdaine. 2012. https://arxiv.org/abs/1211.2851

