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K-Theory

Equivariant K-theory extends ideas from regular topological K-theory to spaces and vector

bundles equipped with an action of a group, which in a natural way generalizes both topological

K-theory and representation theory. Applying this theory to the symmetric group using examples

defined from tensor product constructions allows us to derive the Adams operations from the

representation theory of the symmetric group.

I will establish some basic properties of G bundles, make explicit the relationship betweek

K-theory, representation theory, and equivariant K-theory in the case of spaces with trivial group

action, then show how a simple example gives rise to a family of operations including the Adams

operations.

1. G-Bundles

Definition 1. For a group G, a G-space is a space X with a homomorphism G → Homeo(X). I

will write g.x for the image of g ∈ G under this homomorphism applied to x ∈ X. A morphism of

G-spaces, or G-map, is a continuous map f : X → Y such that for each g ∈ G, f(g.x) = g.f(x).

Definition 2. For X a G-space, a G-vector bundle on X is a G-space E equipped with a G-map

E → X such that each fiber is a (complex) vector space and for all g ∈ G, the restriction of the

associated homeomorphism to a map Ex → Eg.x on each fiber is a (necessarily iso-)morphism of

vector spaces.

Example 3. For any G-module M , and X a G-space, X ×M is a G-bundle, written M, ‘trivial’

in the same sense as a trivial vector bundle over a topological space.

If X is a G-space with the trivial G-action (all g ∈ G act on X by the identity function), then

a G-bundle over X is simply a vector bundle on the space X with a G-action on each fiber. Each

fiber is thus a ‘G-module’, a complex vector space with a G-action (or representation space for G).

Example 4. For any vector bundle E on a space X, the bundle E⊗k has the structure of an Sk-

vector bundle over the trivial Sk-space X, where the action on each fiber permutes the k components

of the tensor product.

Definition 5. A homomorphism of G-vector bundles E → F is a G-map which restricts to a vector

space homomorphism Ex → Fx on each fiber.

Example 6. For G bundles E and F , there is a G-bundle Hom(E,F ) where Hom(E,F )x =

Hom(Ex, Fx). For the G-action, we define for φ : Ex → Fx and g ∈ G, g.φ : Eg.x → Fg.x : e 7→
g.φ(g−1.e).

We can see that a homomorphism of bundles from E to F is precisely what is called an

‘equivariant section’ of Hom(E,F ), which is a G-map X → Hom(E,F ) right inverse to the bundle
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map. To see this, consider an equivariant section consisting of continuously varying linear maps

sx : Ex → Fx, where g.sx = sg.x. That is, for all e ∈ Eg.x, (g.sx)(e) = g.(sx(g−1.e)) = sg.x(e).

Swapping g.e′ in for e gives g.sx(e′) = sg.x(g.e), so the maps sx assemble into a homomorphism

s : E → F with g.s(e) = s(g.e) for all e ∈ E. (The reverse argument works just as well, showing

that the homomorphisms are exactly the equivariant sections of the Hom bundle.)

Proposition 7. Let G be a compact group, X a trivial G-space, and E a G-vector bundle on X.

Then there is an idempotent homomorphism (−)G : E → E defined by eG = 1
|G|Σg∈Gg.e with image

the sub-bundle of E fixed by G.

I will henceforth assume that all groups G are compact (this will not be very restrictive).

Example 8. It immediately follows that if X is a trivial G-space then the fiber maps of homo-

morphisms E → F of bundles over X form a bundle HomG(E,F ) = (Hom(E,F ))G ⊆ Hom(E,F )

over X. As the bundle has trivial G-action, it is sensible to consider it just as a regular vector

bundle over the space X.

Proposition 9. A homomorphism of G-bundles is an isomorphism if it restricts to an isomorphism

on each fiber.

2. K-Theory

Definition 10. The isomorphism classes of G-vector bundles on a G-space X form an abelian

semigroup under direct sum, and we define KG(X) as its group completion.

I will write K for K0 throughout this talk, for both equivariant and non-equivariant K-theory.

Example 11. KG(∗) ∼= R(G), the representation ring of G. A G-vector bundle over a point is

just a G-module, which defines a representation of G, and the associated group completion is the

underlying group of R(G). For any G-space X, pullback along the unique (G-)map X → ∗ defines

a map R(G) ∼= KG(∗) → KG(X) which on bundles sends each G-module M to the trivial bundle

M.

Like the previous example, in many examples that follow I will describe operations on (G-

)bundles then simply state that they extend to operations on the associated K groups. While I

will not provide such proofs here, they are often nontrivial.

Example 12. If X is any space given the trivial G-action, there is a natural inclusion K(X) →
KG(X) induced by assigning the trivial G-action to any vector bundle on X. We also have the

natural map R(G)→ KG(X) sending a representation space M to X ×M with the G-action of M

on each fiber. A G-bundle over the trivial G-space X consists of a vector-bundle over X (belonging

to K(X)) and a G-action on each fiber (which can be described by an element of R(G)). This

information uniquely determines the G-bundles over X in the following sense:

Proposition 13. If X is a trivial G-space then the natural map µ : R(G) ⊗ K(X) → KG(X)

defined above is a ring isomorphism.
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Proof: (Sketch) It suffices to construct a map ν : KG(X) → R(G) ⊗ K(X) inverse to µ.

Let {Mi} be a complete set of ‘simple’ G-modules, i.e. irreducible representations of G. For

[E] ∈ KG(X), define ν([E]) = Σi[Mi]⊗ [HomG(Mi, E)]. Note that {Mi} generates R(G).

Applying µ ◦ ν to the class of a G-bundle E gives the class of the G-bundle
⊕

i Mi ⊗
HomG(Mi, E). As elements of the bundle HomG(Mi, E) are G-maps of the form Mx → Ex,

there is a canonical map
⊕

i Mi ⊗ HomG(Mi, E) → E (defined by the appropriate extensions of

the evaluation map). On each fiber, the restriction map
⊕

iMi ⊗ Hom(Mi, Ex) → Ex is an iso-

morphism (this is a result from representation theory), so as discussed above the bundle map is an

isomorphism. This shows that µ ◦ ν = id.

In the other direction, for any simpleG-moduleMj and vector bundle F onX, ν◦µ sends [Mj ]⊗
[F ] to Σi[Mi]⊗ [HomG(Mi,Mj⊗F )] = Σi[Mi]⊗ [HomG(Mi,Mj)⊗F ] = [Mj ]⊗ [HomG(Mj ,Mj⊗
F )] = [Mj ] ⊗ [F ] as HomG(Mi,Mj) ⊗ F is F if Mi

∼= Mj and 0 otherwise. Extending this to all

of R(G)⊗K(X) shows that ν ◦ µ) = id.

Thus µ has an inverse and so is a bijection. It remains to show that the maps here extend to

the K-groups and are ring isomorphisms, but I will not show that here. ut

3. Operations

For any vector bundle E on a space X, the assignment E 7→ E⊗k as an Sk-bundle over X

induces a natural transformation K(X) → KSk
(X) ∼= R(Sk) ⊗K(X). This is not not necessarily

a group homomorphism, so we will only consider it a natural transformation of sets (also not

obviously well-defined, see [2] chapter 2).

Given an element α of R′k := Hom(R(Sk),Z), we get a natural transformation K(X)
⊗k−−→

KG(X)
ν−→ R(G)⊗K(X)

α⊗id−−−→ Z⊗K(X) ∼= K(X). In the group R(Sk)⊗K(X), [E⊗k] corresponds

to Σi[Mi] ⊗ [HomSk
(Mi, E

⊗k)], so it makes sense to think of α in terms of the values it takes on

each [Mi], the irreducible representations of Sk.

I will abuse notation slightly by writing α : K(X) → K(X) for the operation determined by

α in this manner.

Example 14. LetM be the trivial 1-dimensional representation of Sk. On each fiber, HomSk
(M,E⊗kx )

is the kth symmetric power of Ex, as each map is determined by the image of the single gen-

erator of M whose image must be Sk-invariant. If σk ∈ R′k sends M to 1 and all else to 0,

σk([E]) = [HomSk
(M, E⊗k)], which is the class of the kth symmetric power bundle of E (as the

kth symmetric power on each fiber).

Example 15. Now let M be the 1-dimensional sign representation of Sk. As above, maps in

HomSk
(M,E⊗kx ) are determined by the image of the generator, which must now be anti-symmetric.

It follows that λk ∈ R′k sending M to 1 and all else to 0 acts on [E] as the kth exterior power.

Let πM (E) denote HomSk
(M, E⊗k), and let Tn be the diagonal matrix (t1, ..., tn) considered

as an endomorphism of Cn. Then I claim that TraceπM (Tn) defines a symmetric polynomial in



– 4 –

t1, ..., tn (as for any permutation matrix S we have Traceπ(Tn) = Traceπ(S−1TnS)). We then have

a map

∆n,k : R′k → Sym[t1, ..., tn] : α 7→ Σiα(Mi)TraceπMi

Let R′∗ = ΣkR
′
k. In the limit of n, we extend the maps ∆n,k to a single map ∆ : R′∗ → Sym,

the ring of symmetric functions.

Proposition 16. ∆ is an isomorphism of rings. (This suffices as a definition for a ring structure

on R′∗.)

Example 17. ∆(λk) = ek, as Traceλk(Tn) = ek(t1, ..., tn) as the trace of the kth exterior power

of Tn.

We can now (finally) define the Adams operations as ψk = Qk(λ
1, ..., λk) ∈ R′∗, and it is clear

(by definition in fact) that ∆(ψk) is the kth power sum symmetric function.
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