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Categories with Different Cell Shapes

Categories
2-Categories
Double categories
Multicategories

– dots, arrows
– dots, arrows, globular 2-cells
– dots, red/blue arrows, squares
– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Categories with Different Cell Shapes

Categories

2-Categories
Double categories
Multicategories

– dots, arrows

– dots, arrows, globular 2-cells
– dots, red/blue arrows, squares
– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Categories with Different Cell Shapes

Categories

2-Categories
Double categories
Multicategories

– dots, arrows

– dots, arrows, globular 2-cells
– dots, red/blue arrows, squares
– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Categories with Different Cell Shapes

Categories
2-Categories

Double categories
Multicategories

– dots, arrows
– dots, arrows, globular 2-cells

– dots, red/blue arrows, squares
– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Categories with Different Cell Shapes

Categories
2-Categories

Double categories
Multicategories

– dots, arrows
– dots, arrows, globular 2-cells

– dots, red/blue arrows, squares
– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Categories with Different Cell Shapes

Categories
2-Categories
Double categories

Multicategories

– dots, arrows
– dots, arrows, globular 2-cells
– dots, red/blue arrows, squares

– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Categories with Different Cell Shapes

Categories
2-Categories
Double categories

Multicategories

– dots, arrows
– dots, arrows, globular 2-cells
– dots, red/blue arrows, squares

– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Categories with Different Cell Shapes

Categories
2-Categories
Double categories
Multicategories

– dots, arrows
– dots, arrows, globular 2-cells
– dots, red/blue arrows, squares
– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Categories with Different Cell Shapes

Categories
2-Categories
Double categories
Multicategories

– dots, arrows
– dots, arrows, globular 2-cells
– dots, red/blue arrows, squares
– dots, n-to-1 arrows, n ≥ 0

Brandon T. Shapiro Higher categories in Cat♯



Familial Monads on Cell Diagrams
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t
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→

G1-Set = SetG1 is the category of graphs

→

Categories are algebras for a monad fc on Ĝ1

→

fc(X )0 = X0 = HomG1-Set(·, X )
fc(X )1 = {paths in X} =

∐
n≥0

HomG1-Set(· →
n· · · → ·, X )
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→

fc(X )0 = X0 = HomG1-Set(·, X )
fc(X )1 = {paths in X} =

∐
n≥0

HomG1-Set(· →
n· · · → ·, X )

Brandon T. Shapiro Higher categories in Cat♯



Familial Monads on Cell Diagrams

→

G1 is the category 0 1
t

s

→

G1-Set = SetG1 is the category of graphs

→

Categories are algebras for a monad fc on Ĝ1
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Familial Monads on Cell Diagrams

The data of a familial functor f : D-Set→ C -Set consists of:

A functor f (1) : C → Set (operations outputting a c-cell)
A functor f [−] :

∫
S → D-Set (arities of the operations)

For c in C , X in D-Set, f (X )c =
∐

I∈f (1)c

HomD-Set(f [I], X )

Example: Free category monad on G1-Set
fc(1)0 = {0}, fc(1)1 = N

, fc[n] = · → n· · · → ·

fc(X )0 = HomG1-Set(·, X ),
fc(X )1 =

∐
n≥0

HomG1-Set(· →
n· · · → ·, X )

Unit and multiplication on edges given by length 1 paths and
path concatenation
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Familial Monads in Poly

Example: Free category monad on G1-Set
fc(1)0 = {0}, fc(1)1 = N, fc[n] = · → n· · · → ·
fc(X )0 = HomG1-Set(·, X ),
fc(X )1 =

∐
n≥0

HomG1-Set(· →
n· · · → ·, X )

Unit and multiplication on edges given by length 1 paths and
path concatenation

In Poly-notation, fc = {0}yfc[0] + {1}
∑

n∈fc(1)1

yfc[n].

The monoidal category (Poly, y, ◁) of polynomial endofunctors
on Set consists of disjoint unions of representables yA

Categories agree with ◁ -comonoids in Poly (Ahman-Uustalu)
Bicomodules C D▷ ◁

p in Poly agree with “prafunctors,”
aka familial functors C -Set← D-Set (Garner)
Bicomodules D 0▷

◁X are D-sets, and the composite
p ◁D X of bicomodules is the C -set p(X )

Brandon T. Shapiro Higher categories in Cat♯
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yfc[n].

The monoidal category (Poly, y, ◁) of polynomial endofunctors
on Set consists of disjoint unions of representables yA

Categories agree with ◁ -comonoids in Poly (Ahman-Uustalu)
Bicomodules C D▷ ◁

p in Poly agree with “prafunctors,”
aka familial functors C -Set← D-Set (Garner)
Bicomodules D 0▷

◁X are D-sets, and the composite
p ◁D X of bicomodules is the C -set p(X )

Brandon T. Shapiro Higher categories in Cat♯



Familial Monads in Poly

The monoidal category (Poly, y, ◁) of polynomial endofunctors
on Set consists of disjoint unions of representables yA

Categories agree with ◁ -comonoids in Poly (Ahman-Uustalu)

Bicomodules C D▷ ◁
p in Poly agree with “prafunctors,”

aka familial functors C -Set← D-Set (Garner)

Bicomodules D 0▷ ◁X are D-sets, and the composite
p ◁D X of bicomodules is the C -set p(X )

Cat♯ is the bicategory of categories, prafunctors, and
transformations
A familial monad is a bicomodule C C▷

◁t , written

t =
∑

c∈Ob(C)

∑
I∈t(1)c

yt[I],

with cartesian transformations idC → t and t ◁C t → t
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Nerves of Higher Categories

Categories
2-Categories
Double categories
Multicategories

→ ∆̂
→ Θ̂2

→ ∆̂×∆
→ Ω̂

simplicial sets
Θ2-sets
bisimplicial sets
dendroidal sets
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Nerves of Higher Categories

t =
∑

c∈Ob(C)

∑
I∈t(1)c

yt[I]

with cartesian transformations idC → t and t ◁C t → t
(Weber ‘07) There is a fully faithful functor t-alg→ Θop

t -Set
for a category Θt

with objects
∐

c∈Ob(C)
t(1)c and

Hom(I, J) = Homt-alg
(
t(t[I]), t(t[J ])

)

Morphisms include “cocompositions” yc → t(yc)→ t(t[I])
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Nerves of Higher Categories

(Weber ‘07) There is a fully faithful functor t-alg→ Θop
t -Set

for a category Θt with objects
∐

c∈Ob(C)
t(1)c and

Hom(I, J) = Homt-alg(t(t[I]), t(t[J ]))

For bicomodules p, q as below,
C E

D

▷

◁
p

◁

▷ q

◁

▷[
q
p

]

E -Set C -Set

D-Set

q

p

Lan

there is a bicomodule
[

q
p

]
:=

∑
c∈Ob(C)

∑
I∈p(1)c

yq(p[I])[
t◁C t

t

]
is a comonoid corresponding to the category Θop

t , as
t(t(t[I])) =

∑
c∈Ob(C)

∑
J∈p(1)c

t(t[I])t[J] ∼=
∑

Homt-alg(t(t[J ]), t(t[I]))
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t

A t-algebra can be modeled as a bicomodule C 0▷ ◁A

with a transformation t ◁c A→ A
(Lynch-S.-Spivak) The nerve of an algebra A is t(A), which is
a Θop

t -set as t ◁C A has a Θop
t -coalgebra structure:

C C 0

C C

▷ ◁t

▷

◁
[

t◁C t
t

]

▷ ◁A

▷ ◁t

▷

◁
t

▷

◁

A
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