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� Ĝ2 is the category of 2-graphs

→

Categories are algebras for a monad T on Ĝ1
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(·,X ) TX1 =
∐

n≥0
HomĜ2
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Familial Monads on Cell Diagrams

G1 × G1 is the category
0 1v

1h 2

Double-Categories are algebras for a monad on Ĝ1 × G1
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0 · · ·

c0 c1 c2 · · ·
t s

t
s1,s2

t
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M is the category
0 · · ·

c0 c1 c2 · · ·
t s

t
s1,s2

t

Multi-Categories are algebras for a monad on M̂

Brandon Shapiro Shape Independent Category Theory



Familial Monads on Cell Diagrams

G1 × G1 is the category
0 1v

1h 2

Double-Categories are algebras for a monad on Ĝ1 × G1
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Familial Monads on Cell Diagrams

The data of a familial endofunctor F on Ĉ consists of:

A functor S : Cop → Set
A functor E : el(S)→ Ĉ

For c in C, X in Ĉ, FXc =
∐

t∈Sc
HomĈ(Et,X )
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A functor S : Cop → Set
A functor E : el(S)→ Ĉ
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Theories and Nerves

For each t ∈ Sc, an algebra A of T has a map
HomĈ(Et,A)→ Ac ∼= HomĈ(y(c),A)

This map is not representable, but its transpose is:
HomTAlg (TEt,A)→ HomTAlg (Ty(c),A)

The full subcategory CT of TAlg on {TEt} has
“cocomposition maps”
(Weber 2007) The T nerve N : TAlg → ĈT is fully faithful:

NATEt = HomTAlg (TEt,A)
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HomĈ(Et,A)→ Ac ∼= HomĈ(y(c),A)
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Theories and Nerves

(Weber 2007) The T nerve N : TAlg → ĈT is fully faithful

The full subcategory CT of TAlg on {TEt} is the theory
associated to T
Nerves of T -algebras are functors Cop

T → Set preserving
certain limits
∆, Θ2, ∆2, and Ω all arise from this construction
Those are all test categories...
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Enrichment via Cell Shapes

Let C be a small direct category with local maximum object e
For any small category D, define C oe D to have:

Objects ob(C)\{e} t ob(D)
Same morphisms c → c ′ as C and d → d ′ as D

For all c, d , Hom(c, d) = Hom(c, e), Hom(d , c) = ∅
For f : c → e in C, c fd−→ d g−→ d ′ = c fd′−→ d ′
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Let C be a small direct category with local maximum object e
For any small category D, define C oe D to have:
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Enrichment via Cell Shapes

Cell shapes of C oe D are e-cells stuffed with cell shapes of D
Cell diagrams in Ĉ oe D are cell diagrams over C stuffed with a
diagram over D in each e-cell
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Cell diagrams in Ĉ oe D are cell diagrams over C stuffed with a
diagram over D in each e-cell

1v

0′
(

0 2
)

1h

s

t

s

t

s

t

1v

0
(

0′ 1′
)

1h

s

t

s

t
s

t

s

t
s

t
s

t

Brandon Shapiro Shape Independent Category Theory



Enrichment via Cell Shapes

Cell shapes of C oe D are e-cells stuffed with cell shapes of D
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Enrichment via Cell Shapes

Let TC , TD be familial monads on Ĉ, D̂
Build composable diagrams over C oe D by stuffing those over
C with composable diagrams over D
(S.) These diagrams represent a familial monad T on Ĉ oe D.
(S.) When C = G1, T -algebras ' TD-enriched categories.
(S.) When TC is “e-injective” and TD “has enough
degeneracies”, the theory (C oe D)T ' CTC o DTD where
CTC → Γ counts the e-cells in each ECt.
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