Shape Independent Category Theory

Brandon Shapiro

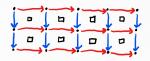
bts82@cornell.edu

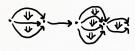
Category Theory OctoberFest 2019

Categories with Different Cell Shapes

- Categories
- 2-Categories
- Double-Categories
- Multi-Categories

- dots, arrows
- dots, arrows, 2-globs
- dots, red/blue arrows, squares
- dots, *n*-to-1 arrows, $n \ge 0$

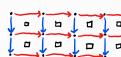




→ < Ξ → <</p>

Nerves

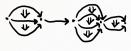
- Categories
- 2-Categories
- Double-Categories
- Multi-Categories



simplicial sets Θ_2 -sets bisimplicial sets dendroidal sets

< □ > < 同 > < Ξ > < Ξ > < Ξ >

э

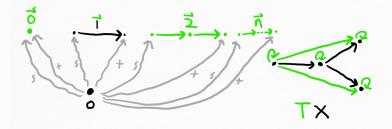


•
$$G_1$$
 is the category $0 \xrightarrow[t]{s} 1$

- $\widehat{G_1}$ is the category of graphs
- Categories are algebras for a monad T on $\widehat{G_1}$

•
$$TX_0 = X_0 = Hom_{\widehat{G}_1}(\cdot, X)$$

 $TX_1 = \{ \text{paths in } X \} = \coprod_{n \ge 0} Hom_{\widehat{G}_1}(\cdot \to \cdot \overset{n}{\cdots} \to \cdot, X)$

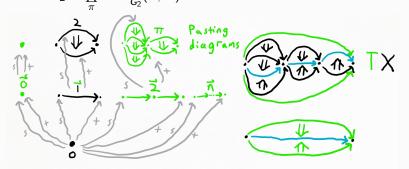


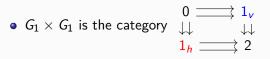
•
$$G_2$$
 is the category $0 \xrightarrow[t]{s} 1 \xrightarrow[t]{s} 2$

•
$$\widehat{G_2}$$
 is the category of 2-graphs

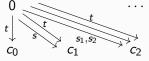
• 2-Categories are algebras for a monad T on $\widehat{G_2}$

•
$$TX_0 = Hom_{\widehat{G}_2}(\cdot, X)$$
 $TX_1 = \coprod_{n \ge 0} Hom_{\widehat{G}_2}(\cdot \to \cdots \to \cdot, X)$
 $TX_2 = \coprod Hom_{\widehat{G}}(\pi, X)$





- Double-Categories are algebras for a monad on $\widehat{\mathcal{G}_1 \times \mathcal{G}_1}$
- *M* is the category

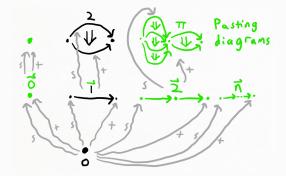


• Multi-Categories are algebras for a monad on \widehat{M}

• The data of a familial endofunctor F on $\hat{\mathcal{C}}$ consists of:

- A functor $S : C^{op} \rightarrow Set$
- A functor $E : el(S) \rightarrow \hat{C}$

• For c in C, X in \hat{C} , $FX_c = \coprod_{t \in Sc} Hom_{\hat{C}}(Et, X)$



Theories and Nerves

• For each $t \in Sc$, an algebra A of T has a map

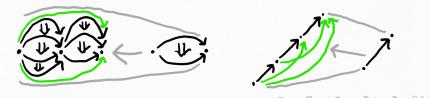
 $Hom_{\hat{\mathcal{C}}}(Et, A) \to A_c \cong Hom_{\hat{\mathcal{C}}}(y(c), A)$

• This map is not representable, but its transpose is:

$$Hom_{TAlg}(TEt, A) \rightarrow Hom_{TAlg}(Ty(c), A)$$

- The full subcategory C_T of *TAlg* on {*TEt*} has "cocomposition maps"
- (Weber 2007) The T nerve $N : TAlg \to \widehat{C_T}$ is fully faithful:

$$NA_{TEt} = Hom_{TAlg}(TEt, A)$$

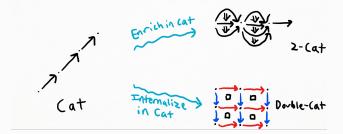


Theories and Nerves

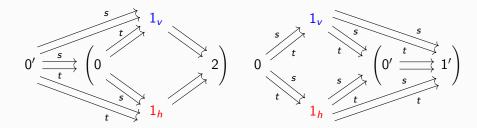
- (Weber 2007) The T nerve $N : TAlg \to \widehat{\mathcal{C}_T}$ is fully faithful
- The full subcategory C_T of *TAlg* on {*TEt*} is the *theory* associated to *T*
- Nerves of *T*-algebras are functors $C_T^{op} \to Set$ preserving certain limits
- Δ , Θ_2 , Δ^2 , and Ω all arise from this construction
- Those are all test categories...

Shape Independent Category Theory

- Ideas from category theory should generalize to other familial algebras in cell diagrams (and often do!)
- Enriched categories are structures with new cell shapes
- So are internal categories
- These constructions extend to other familial representations

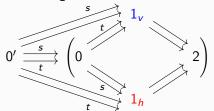


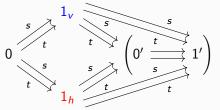
- Let \mathcal{C} be a small direct category with local maximum object e
- For any small category \mathcal{D} , define $\mathcal{C} \wr_e \mathcal{D}$ to have:
 - Objects $ob(C) \setminus \{e\} \sqcup ob(D)$
 - Same morphisms c o c' as ${\mathcal C}$ and d o d' as ${\mathcal D}$
 - For all c, d, Hom(c, d) = Hom(c, e), $Hom(d, c) = \emptyset$
 - For $f: c \to e$ in \mathcal{C} , $c \xrightarrow{f_d} d \xrightarrow{g} d' = c \xrightarrow{f_{d'}} d'$

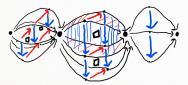


- Cell shapes of $\mathcal{C} \wr_e \mathcal{D}$ are *e*-cells stuffed with cell shapes of \mathcal{D}
- Cell diagrams in C
 ∂ ∈ D

 are cell diagrams over C stuffed with a diagram over D in each e-cell

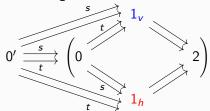


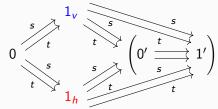


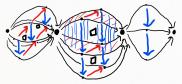


- Cell shapes of $\mathcal{C} \wr_e \mathcal{D}$ are *e*-cells stuffed with cell shapes of \mathcal{D}
- Cell diagrams in C
 ∂ ∈ D

 are cell diagrams over C stuffed with a diagram over D in each e-cell





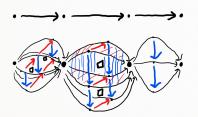


Cashered Cashered Cashered Cashered Cashered Cashered Cashered Cashered Cashered

Brandon Shapiro

Shape Independent Category Theory

- Let $T_{\mathcal{C}}$, $T_{\mathcal{D}}$ be familial monads on $\widehat{\mathcal{C}}$, $\widehat{\mathcal{D}}$
- Build composable diagrams over C ≥ D by stuffing those over C with composable diagrams over D
- (S.) These diagrams represent a familial monad T on $\widehat{C}_{l_e} \widehat{\mathcal{D}}$.
- (S.) When $C = G_1$, *T*-algebras $\simeq T_D$ -enriched categories.
- (S.) When $T_{\mathcal{C}}$ is "*e*-injective" and $T_{\mathcal{D}}$ "has enough degeneracies", the theory $(\mathcal{C} \wr_e \mathcal{D})_T \simeq \mathcal{C}_{T_{\mathcal{C}}} \wr \mathcal{D}_{T_{\mathcal{D}}}$ where $\mathcal{C}_{T_{\mathcal{C}}} \rightarrow \Gamma$ counts the *e*-cells in each $E_{\mathcal{C}}t$.



- Tom Leinster, *Higher Operads, Higher Categories*, London Mathematical Society Lecture Notes Series, Cambridge University Press, ISBN 0-521-53215-9.
- Mark Weber, Familial 2-Functors and Parametric Right Adjoints, Theory and Applications of Categories, Vol. 18, No. 22, 2007, pp. 665–732.

Thank You!