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Partial Evaluations

Algebra is all about evaluating formal expressions
Expressions can also be partially evaluated
Partial evaluations form the paths in a directed space of
formal expressions
How does this space relate to algebra? Computation?
Probability?
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Monads

A monad is a functor T : C → C where TX describes formal
expressions on X ,

where we have:

A natural “unit” map η : X → TX
A natural “multiplication” map µ : TTX → TX
Unit and associativity equations:

TX TTX

TX

ηT

µ

TTTX TTX

TTX TX

Tµ

µT µ

µ

Example:
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Algebras

An algebra for a monad T is an object A equipped with a map
e : TA→ A sending each formal expression to its evaluation
e must satisfy the following equations:

A TA

A

η

e

TTA TA

TA A

Te

µ e

e

Example:
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Partial evaluations

Consider a T -algebra (A, e) and formal expressions p, q ∈ TA
A partial evaluation from p to q is a doubly nested expression
v ∈ TTA with µ(v) = p and Te(v) = q
If p partially evaluated to q, then e(p) = e(q)
There is always a partial evaluation η(p) from p to ηe(p)

Example: (Commutative) monoid N

Do partial evaluations compose?
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Do Partial Evaluations Compose?

A partial evaluation from p to q is a doubly nested expression
v ∈ TTA with µ(v) = p and Te(v) = q
Consider the trivial S-module:

Let S = N[
√

2] = {n + m
√

2}

(CFPS) Partial evaluations don’t always compose
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Simplicial Sets
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Simplicial Sets
The simplex category ∆ is the category of finite nonempty
ordered sets and order preserving functions.

A simplicial object X in a category C is a functor ∆op → C.

Like the bar construction BarT (A)
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Compositions

When do successive partial evaluations have a composition
strategy?

Partial evaluations are equivalently maps {∗} → T 2A

{∗} T 3A

T 2A T 2A

TA TA TA

µ Te µ Te
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If the square is a weak pullback (aka weakly cartesian), the
dashed map always exists but not necessarily uniquely
In a simplicial set X , this property

corresponds to having all
inner 2-horn fillers
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d2

d0

wpb d1

d0
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Compositions

When do partial evaluations form a category?

If the naturality squares of µ are cartesian
For X = BarT (A), this means Xn ∼= X1 ×X0

n· · · ×X0 X1
This makes BarT (A) the nerve of a category with formal
expressions as objects and partial evaluations as morphisms

T n+1A

T nA T nA

T n−1A T n−1A T n−1A

T 3A · · · · · · T 3A

T 2A T 2A · · · T 2A T 2A

TA TA TA · · · TA TA TA

µ T ne

µ T n−1e µ T n−1e

. .
. . . . . .

. . . . . .
. . . .

µ T 2e µ T 2e µ T 2e µ T 2e

µ Te µ Te µ Te µ Te µ Te
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BC Monads

Free monoid monad (or any plain operad) has cartesian µ
Free comm. monoid monad T has only weakly cartesian µ
T also preserves weak pullbacks
Such BC monads include distribution, any symmetric operad

T 3A T 2A

T 2A TA

µ

T 2e

pb µ

Te

T m+4A T m+3A

T m+3A T m+2A

µ

T m+2µ

wpb µ

T m+1µ
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Filler Conditions

What properties does BarT (A) have when T is BC?

Let n ≥ 2, j − i > 1
A simplicial set X with this property

is inner span complete

(CFPS) X then has fillers for all spans containing the spine
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∆n

∀

∃
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Filler Conditions

What other fillers do inner span complete simplicial sets have?

(CFPS) All directed acyclic configurations S ⊂ ∆n:

S contains the spine of ∆n

The 1-skeleton of S is chordal
S has ∂∆k ↪→ ∆k fillers for 2 ≤ k ≤ n

Does not include any horns
Includes spine inclusions

and 2-Segal inclusions
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Parting Thoughts...

We can also describe when partial evaluations do or don’t
have inverses
Inner span completeness is not a homotopical property
How do properties of BarT (A) relate to computation?
Higher order rewriting?

Thank you!
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