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A poset is expressible if it is either empty or can be constructed
from singleton posets by finitely many disjoint unions and joins.

Not all finite posets are expressible:
b d
Z =
N
a c
(S.—Spivak) A poset is expressible if and only if it is finite and

admits no full embeddings of Z.
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given by addition.

(a+ b) max (c + d) < (amax ¢) + (b max d)

max and + correspond to how the runtimes of two programs
behave when they are run in parallel and series, respectively.

Given a finite set of programs and a poset of dependencies between
them, the corresponding operation in R>o computes its optimal

runtime.
d
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