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Duoidal categories

A duoidal category C consists of

two monoidal structures (I, ⊗) and (J , ◁);
lax monoidal structures on the functors ◁ : C × C → C and
J : 1 → C with respect to (I, ⊗) (+ properties)
equivalently, natural interchange morphisms (+ properties)

(a ◁ b) ⊗ (c ◁ d) → (a ⊗ c) ◁ (b ⊗ d)

I → I ◁ I J ⊗ J → J I → J

A physical duoidal category moreover has
⊗ is symmetric (compatibly with interchange)
I ∼= J (compatibly with interchange)
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Posets[
(P ◁ Q) ⊗ (R ◁ S) → (P ⊗ R) ◁ (Q ⊗ S), ⊗ symmetric, I ∼= J

]
The category of posets has a physical duoidal structure:

The unit is the empty poset ∅
⊗ is disjoint union, ◁ is join

P ⊗ Q =
(

P Q
)

P ◁ Q =


Q

P


where P ◁ Q has elements P ⊔ Q and p < q for p ∈ P, q ∈ Q

Q S

P R

 ↪→


Q S

P R


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Expressions[
(a ◁ b) ⊗ (c ◁ d) → (a ⊗ c) ◁ (b ⊗ d), ⊗ symmetric, I ∼= J

]
Physical duoidal categories have many compound operations and
natural maps between them:

a ◁ (b ⊗ (c ◁ d))

d

b c

a

a ⊗ (c ◁ d) → (a ⊗ c) ◁ d

 d

a c

 ↪→

 d

a c



(S.–Spivak) These operations and natural maps correspond to
expressible posets and bijective monotone functions.

A poset is expressible if it is either empty or can be constructed
from singleton posets by finitely many disjoint unions and joins.
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Expressible posets[
(a ◁ b) ⊗ (c ◁ d) → (a ⊗ c) ◁ (b ⊗ d), ⊗ symmetric, I ∼= J

]
A poset is expressible if it is either empty or can be constructed
from singleton posets by finitely many disjoint unions and joins.

Not all finite posets are expressible:

Z =


b d

a c



(S.–Spivak) A poset is expressible if and only if it is finite and
admits no full embeddings of Z .
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A categorical operad for physical duoidal categories[
(a ◁ b) ⊗ (c ◁ d) → (a ⊗ c) ◁ (b ⊗ d), ⊗ symmetric, I ∼= J

]
There is a categorical symmetric operad Expr where Exprn is the
category of expressible posets with n elements and bijective
monotone functions.

The unit is the singleton poset and operadic
composition is given by “substitution”

(
(a ⊗ c) ◁ (b ⊗ d)

)
; P, Q, R, S 7→


Q S

P R


An Expr-algebra is a category C with coherent functors

Exprn × Cn → C.

(S.–Spivak) Expr-algebras are precisely physical duoidal categories.
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Nonnegative reals and parallel programs[
(a ◁ b) ⊗ (c ◁ d) → (a ⊗ c) ◁ (b ⊗ d), ⊗ symmetric, I ∼= J

]
The posetal category R≥0 of nonnegative real numbers has a
physical duoidal structure with unit 0, ⊗ given by maximum and ◁
given by addition.

(a + b) max (c + d) ≤ (a max c) + (b max d)

max and + correspond to how the runtimes of two programs
behave when they are run in parallel and series, respectively.

Given a finite set of programs and a poset of dependencies between
them, the corresponding operation in R≥0 computes its optimal
runtime.

d

b c

a
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