Finite posets as algebraic expressions in duoidal categories

Brandon T. Shapiro* and David I. Spivak

University of Virginia*

Octoberfest 2023

Duoidal categories

A $\mathit{duoidal}$ category $\mathcal C$ consists of

- two monoidal structures (I, \otimes) and (J, \triangleleft) ;
- lax monoidal structures on the functors \triangleleft : $C \times C \rightarrow C$ and $J: 1 \rightarrow C$ with respect to (I, \otimes) (+ properties)
- equivalently, natural interchange morphisms (+ properties)

$$(a \triangleleft b) \otimes (c \triangleleft d) \rightarrow (a \otimes c) \triangleleft (b \otimes d)$$
$$I \rightarrow I \triangleleft I \qquad J \otimes J \rightarrow J \qquad I \rightarrow J$$

A physical duoidal category moreover has

- ⊗ is symmetric (compatibly with interchange)
- $I \cong J$ (compatibly with interchange)

Posets

$$\Big[\ (P \triangleleft Q) \otimes (R \triangleleft S) \rightarrow (P \otimes R) \triangleleft (Q \otimes S), \quad \otimes \text{ symmetric, } \quad I \cong J \ \Big]$$

The category of posets has a physical duoidal structure:

- The unit is the empty poset Ø
- ⊗ is disjoint union, ⊲ is join

$$P\otimes Q=\left(\begin{array}{cc}P& &Q\end{array}
ight) \qquad \qquad P\triangleleft Q=\left(\begin{array}{c}Q\\\uparrow\\P\end{array}
ight)$$

where $P \triangleleft Q$ has elements $P \sqcup Q$ and p < q for $p \in P$, $q \in Q$

Expressions

$$\left[\ (a \triangleleft b) \otimes (c \triangleleft d) \rightarrow (a \otimes c) \triangleleft (b \otimes d), \quad \otimes \text{ symmetric, } \quad I \cong J \ \right]$$

Physical duoidal categories have many compound operations and natural maps between them:

$$a \triangleleft (b \otimes (c \triangleleft d))$$

$$b \qquad \qquad \downarrow c$$

$$a \otimes (c \triangleleft d) \rightarrow (a \otimes c) \triangleleft d \qquad \begin{pmatrix} d \\ d \\ \uparrow \\ a \end{pmatrix} \qquad \hookrightarrow \qquad \begin{pmatrix} d \\ \downarrow \uparrow \\ \downarrow a \end{pmatrix}$$

(S.–Spivak) These operations and natural maps correspond to *expressible* posets and bijective monotone functions.

A poset is expressible if it is either empty or can be constructed from singleton posets by finitely many disjoint unions and joins.

Expressible posets

$$\left[(a \triangleleft b) \otimes (c \triangleleft d) \rightarrow (a \otimes c) \triangleleft (b \otimes d), \quad \otimes \text{ symmetric, } \quad I \cong J \right]$$

A poset is expressible if it is either empty or can be constructed from singleton posets by finitely many disjoint unions and joins.

Not all finite posets are expressible:

$$Z = \left(\begin{array}{cc} b & d \\ \uparrow & \uparrow \\ a & c \end{array}\right)$$

(S.–Spivak) A poset is expressible if and only if it is finite and admits no full embeddings of Z.

A categorical operad for physical duoidal categories

$$\Big[\; (\textit{a} \triangleleft \textit{b}) \otimes (\textit{c} \triangleleft \textit{d}) \rightarrow (\textit{a} \otimes \textit{c}) \triangleleft (\textit{b} \otimes \textit{d}), \quad \otimes \text{ symmetric, } \quad \textit{I} \cong \textit{J} \; \Big]$$

There is a categorical symmetric operad \mathbf{Expr} where \mathbf{Expr}_n is the category of expressible posets with n elements and bijective monotone functions. The unit is the singleton poset and operadic composition is given by "substitution"

$$((a \otimes c) \triangleleft (b \otimes d)); P, Q, R, S \mapsto \begin{pmatrix} Q & S \\ \uparrow & \uparrow \\ P & R \end{pmatrix}$$

An **Expr**-algebra is a category \mathcal{C} with coherent functors

$$\mathsf{Expr}_n \times \mathcal{C}^n \to \mathcal{C}.$$

(S.–Spivak) **Expr**-algebras are precisely physical duoidal categories.

Nonnegative reals and parallel programs

$$\left[(a \triangleleft b) \otimes (c \triangleleft d) \rightarrow (a \otimes c) \triangleleft (b \otimes d), \quad \otimes \text{ symmetric, } \quad I \cong J \right]$$

The posetal category $\mathbb{R}_{\geq 0}$ of nonnegative real numbers has a physical duoidal structure with unit $0, \otimes$ given by maximum and \triangleleft given by addition.

$$(a+b)\max(c+d) \leq (a\max c) + (b\max d)$$

 \max and + correspond to how the runtimes of two programs behave when they are run in parallel and series, respectively.

Given a finite set of programs and a poset of dependencies between them, the corresponding operation in $\mathbb{R}_{\geq 0}$ computes its optimal runtime.

References

 Brandon T. Shapiro and David I. Spivak, "Duoidal Structures for Compositional Dependence" arXiv:2210.01962

Thanks!