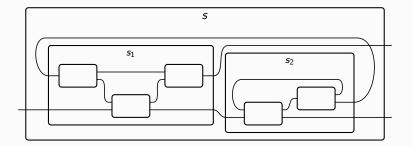
Dynamic Operads for Evolving Organizations

Brandon T. Shapiro* and David I. Spivak

JMM 2023

.

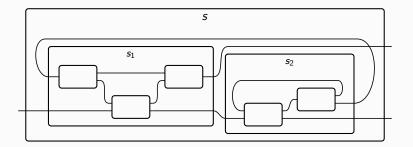
Nested dynamic organizations



æ

Nested dynamic organizations

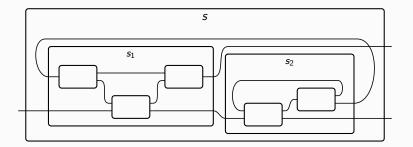
Organizations: polynomials and wiring diagrams



э

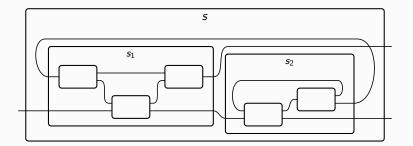
(日)

- Nested dynamic organizations
- Organizations: polynomials and wiring diagrams
- Oynamics: polynomial coalgebras



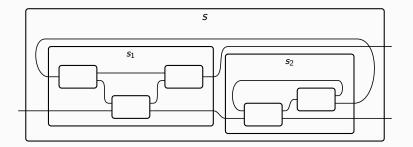
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Nested dynamic organizations
- Organizations: polynomials and wiring diagrams
- Oynamics: polynomial coalgebras
- Over the structure Structure Structure



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Nested dynamic organizations
- Organizations: polynomials and wiring diagrams
- Oynamics: polynomial coalgebras
- Over the structure of the structure o
- 6 A dynamic weighted prediction market

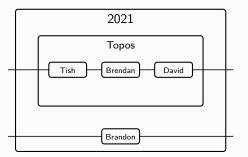


伺 ト イヨト イヨト

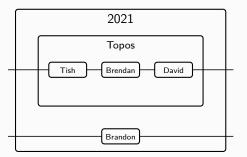
• How I joined Topos Institute

A B M A B M

• How I joined Topos Institute



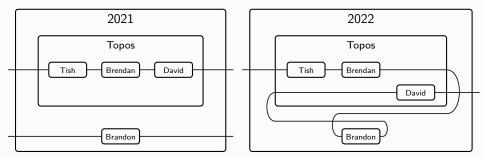
• How I joined Topos Institute



(Not an accurate representation of Topos Institute's internal structure)

・ 同 ト ・ ヨ ト ・ ヨ ト

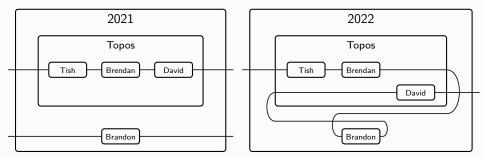
• How I joined Topos Institute



(Not an accurate representation of Topos Institute's internal structure)

(日)

• How I joined Topos Institute



(Not an accurate representation of Topos Institute's internal structure)

イロト イヨト イヨト イヨト

• Let A, B, C, D, E, F, G be sets, and consider the polynomials

伺 と く ヨ と く ヨ と …

• Let A, B, C, D, E, F, G be sets, and consider the polynomials $p = CDy^{AB}$

伺 ト イヨ ト イヨ ト

р

• Let A, B, C, D, E, F, G be sets, and consider the polynomials

$$= CDy^{AB}$$
 $\xrightarrow{A} p C$

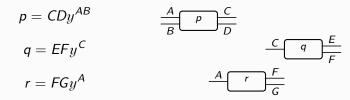
• • = • • = •

 $r = FGy^A$

• Let A, B, C, D, E, F, G be sets, and consider the polynomials $p = CDy^{AB}$ $A = P = CDy^{C}$ $q = EFy^{C}$

伺 ト イ ヨ ト イ ヨ ト

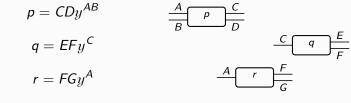
• Let A, B, C, D, E, F, G be sets, and consider the polynomials



伺 と く ヨ と く ヨ と …

4/8

• Let A, B, C, D, E, F, G be sets, and consider the polynomials

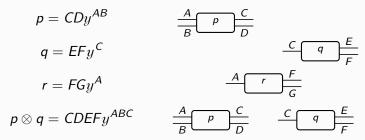


 $p \otimes q = CDEFy^{ABC}$

< 同 > < 三 > < 三 > 、

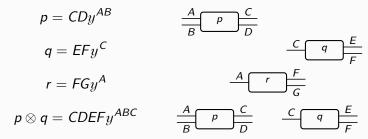
4/8

• Let A, B, C, D, E, F, G be sets, and consider the polynomials



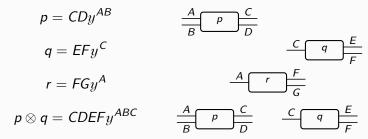
伺 ト イヨト イヨト

• Let A, B, C, D, E, F, G be sets, and consider the polynomials



 Polynomials form a category where a morphism p ⊗ q → r consists of functions

• Let A, B, C, D, E, F, G be sets, and consider the polynomials

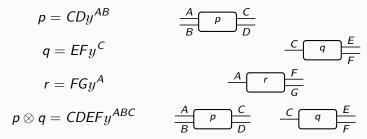


 Polynomials form a category where a morphism p ⊗ q → r consists of functions

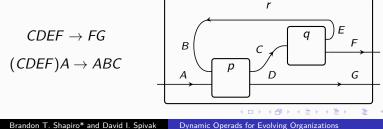
 $CDEF \rightarrow FG$ $(CDEF)A \rightarrow ABC$

< 回 > < 三 > <

• Let A, B, C, D, E, F, G be sets, and consider the polynomials



• Polynomials form a category where a morphism $p \otimes q \rightarrow r$ consists of functions



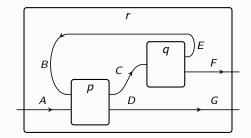
• A *p*-coalgebra is a set S of "states" with a function S o p(S)

• • = • • = •

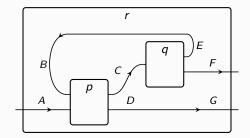
- A *p*-coalgebra is a set S of "states" with a function S o p(S)
- For $p(S) = CD \times S^{AB}$, each state is assigned an element of CD and a function $AB \rightarrow S$ which updates the state

伺下 イヨト イヨト

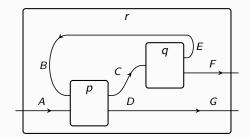
- A *p*-coalgebra is a set S of "states" with a function S o p(S)
- For p(S) = CD × S^{AB}, each state is assigned an element of CD and a function AB → S which updates the state



- A *p*-coalgebra is a set S of "states" with a function S o p(S)
- For $p(S) = CD \times S^{AB}$, each state is assigned an element of CD and a function $AB \rightarrow S$ which updates the state
- $[p \otimes q, r]$ is the polynomial Hom_{Poly} $(p \otimes q, r) \times y^{ACDEF}$



- A *p*-coalgebra is a set S of "states" with a function S o p(S)
- For $p(S) = CD \times S^{AB}$, each state is assigned an element of CD and a function $AB \rightarrow S$ which updates the state
- $[p \otimes q, r]$ is the polynomial Hom_{Poly}(p \otimes q, r) imes y^{ACDEF}
- A $[p \otimes q, r]$ -coalgebra consists of, for each state $s \in S$, a "wiring" $p \otimes q \rightarrow r$ and a "rewiring" function $ACDEF \rightarrow S$



• An operad S consists of sets S_n of *n*-ary operations for all $n \in \mathbb{N}$ with compatible unit and composition operations

 $1 \xrightarrow{\eta} S_1, \qquad S_n \times S_{m_1} \times \cdots \times S_{m_n} \xrightarrow{\mu} S_{m_1 + \cdots + m_n}$

何 ト イヨ ト イヨ ト

• An operad S consists of sets S_n of *n*-ary operations for all $n \in \mathbb{N}$ with compatible unit and composition operations

$$1 \xrightarrow{\eta} S_1, \qquad S_n \times S_{m_1} \times \cdots \times S_{m_n} \xrightarrow{\mu} S_{m_1 + \cdots + m_n}$$

• A dynamic operad on p is an operad S along with coalgebras $S_n o [p^{\otimes n},p](S_n)$

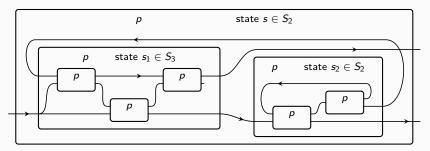
for all *n*, such that η and μ respect wirings and rewirings

• An operad S consists of sets S_n of *n*-ary operations for all $n \in \mathbb{N}$ with compatible unit and composition operations

$$1 \xrightarrow{\eta} S_1, \qquad S_n \times S_{m_1} \times \cdots \times S_{m_n} \xrightarrow{\mu} S_{m_1 + \cdots + m_n}$$

• A dynamic operad on p is an operad S along with coalgebras $S_n o [p^{\otimes n},p](S_n)$

for all n, such that η and μ respect wirings and rewirings

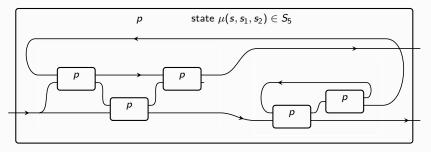


• An operad S consists of sets S_n of *n*-ary operations for all $n \in \mathbb{N}$ with compatible unit and composition operations

$$1 \xrightarrow{\eta} S_1, \qquad S_n \times S_{m_1} \times \cdots \times S_{m_n} \xrightarrow{\mu} S_{m_1 + \cdots + m_n}$$

• A dynamic operad on p is an operad S along with coalgebras $S_n o [p^{\otimes n},p](S_n)$

for all *n*, such that η and μ respect wirings and rewirings



 Let Δ⁺_X be the set of nowhere-zero probability distributions on a finite set X

• • = • • = •

 Let Δ⁺_X be the set of nowhere-zero probability distributions on a finite set X

• Let
$$p=\Delta^+_X y^X$$
, where $p^{\otimes n}=(\Delta^+_X)^n y^{X'}$

$$X \xrightarrow{p} \Delta_X^+$$

 Let Δ⁺_X be the set of nowhere-zero probability distributions on a finite set X

• Let
$$p = \Delta_X^+ y^X$$
, where $p^{\otimes n} = (\Delta_X^+)^n y^{X^n}$

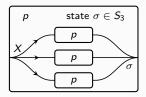
• Let $S_n = \Delta_{\underline{n}}^+$, for \underline{n} the set with *n* elements (players), with an operad structure given by convex combination

7/8

 Let Δ⁺_X be the set of nowhere-zero probability distributions on a finite set X

• Let
$$p = \Delta_X^+ y^X$$
, where $p^{\otimes n} = (\Delta_X^+)^n y^{X^n}$

- Let $S_n = \Delta_{\underline{n}}^+$, for \underline{n} the set with *n* elements (players), with an operad structure given by convex combination
- The wiring of a state $\sigma = (\sigma_1, ..., \sigma_n) \in S_n$ sends $\tau^1, ..., \tau^n$ to $\sigma_1 \tau^1 + \cdots + \sigma_n \tau^n$ and x to (x, ..., x)

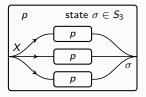


 Let Δ⁺_X be the set of nowhere-zero probability distributions on a finite set X

• Let
$$p = \Delta_X^+ y^X$$
, where $p^{\otimes n} = (\Delta_X^+)^n y^{X^n}$

- Let $S_n = \Delta_{\underline{n}}^+$, for \underline{n} the set with n elements (players), with an operad structure given by convex combination
- The wiring of a state $\sigma = (\sigma_1, ..., \sigma_n) \in S_n$ sends $\tau^1, ..., \tau^n$ to $\sigma_1 \tau^1 + \cdots + \sigma_n \tau^n$ and x to (x, ..., x)
- The rewiring $(\Delta_X^+)^n \times X \to \Delta_n^+$ sends $\tau^1, ..., \tau^n, x$ to σ' where

$$\sigma_i' = \frac{\sigma_i \tau_x^i}{\sum_j \sigma_j \tau_x^j}$$



7/8

- Brandon T. Shapiro and David I. Spivak, "Dynamic operads, dynamic categories: From deep learning to prediction markets" arXiv:2205.03906
- Matteo Capucci, Riu Rodriguez Sakamoto, Brandon T. Shapiro, and David I. Spivak, "A dynamic monoidal category for strategic games" Topos Institute Blog
- Sophie Libkind and David I. Spivak, "When you light up, I light up: A dynamical monoidal category of Hebbian learners" Topos Institute Blog

Thanks!

周 ト イ ヨ ト イ ヨ ト