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Abstract. We find that cusp densities of hyperbolic knots in S3 are dense in
[0, 0.6826 . . . ] and those of links are dense in [0, 0.853 . . . ]. We define a new invari-
ant associated with cusp volume, the cusp crossing density, as the ratio between
the cusp volume and the crossing number of a link, and show that cusp crossing
density for links is bounded above by 3.1263 . . . . Moreover, there is a sequence of
links with cusp crossing density approaching 3. The least upper bound for cusp
crossing density remains an open question. For two-component hyperbolic links,
cusp crossing density is shown to be dense in the interval [0, 1.6923 . . . ] and for all
hyperbolic links, cusp crossing density is shown to be dense in [0, 2.120 . . . ].

1. Introduction

In order to study hyperbolic knots and links, one considers their complements
and the invariants that are associated to them. Two such invariants are volume and
cusp volume. The volume of hyperbolic manifolds has been the focus of much study.
This paper considers certain invariants related to the cusps.

A cusp of a non-compact finite volume hyperbolic 3-manifold is a submanifold
homeomorphic to T × [0, 1) that lifts to a collection of horoballs in hyperbolic 3-
space. In the case of knots and links, a cusp is topologically a tubular neighborhood
of the link intersected with the link complement. A cusp is maximal if there is no
larger cusp containing it, which occurs exactly when the cusp is tangent to itself at
one or more points.

The cusp volume cv(K) of a knot K is the volume of its maximal cusp. The
maximal cusp volume of a link L, cv(L), is the sum of the volumes of the individual
cusps that are not overlapping in their interiors and that yields the largest possible
total. Note that for a two-component link, the maximal cusp volume is realized when
one of the two cusps is maximized first and the other is maximized relative to it.

It is natural then to consider the relationship between cusp volume and volume,
which motivates the study of their ratio, cusp density.

Definition 1.1. The cusp density of a knot or link L, cd(L), is defined as the ratio
of the maximal cusp volume cv(L) to the volume of the complement vol(L).

cd(L) :=
cv(L)

vol(L)

Let vtet = 1.01494 . . . be the volume of an ideal regular tetrahedron in hyperbolic
3-space and voct = 3.6638 . . . the volume of an ideal regular octahedron in hyperbolic
3-space. In [7], Böröczky proved that the densest packing of horoballs in hyperbolic

space gives a ratio of
√
3

2vtet
≈ 0.853 . . . which in turn provides an upper bound on
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cusp density (cf.[13]). This value for cusp density is achieved by the figure-eight
knot. By results of [15], this is the only knot that achieves this highest possible
cusp density. In [3], it was proved that cusp densities for all cusped finite volume
hyperbolic 3-manifolds are dense in the interval [0, 0.853 . . . ].

In Section 2, we find intervals in which the respective cusp densities of knots and
links are dense. We first outline the construction from [3] for general cusped hyper-
bolic 3-manifolds, and then show that it in fact proves that cusp densities of link
complements in S3 are a dense subset of [0, 0.853 . . . ]. We next construct intervals in
which cusp densities of knots are dense, given a knot with a particular cusp density,
and then use explicit examples to obtain the following theorem:

Theorem 1.2. Cusp densities of knots in S3 are dense in [0, 0.6826 . . . ].

A crucial construction for our proof is belted sums of links as shown in Figure 1.
In [1], it was proved that because incompressible twice-punctured disks are totally
geodesic with a unique hyperbolic structure, the hyperbolic structures of the two link
complements are preserved when they are glued together along the cut open twice
punctured disks bounded by the trivial component. Thus, the volume of the belted
sum is the sum of the two respective volumes, as in Figure 1. In this paper, we study
the effect of belted sums on cusp volume, and use these results to prove the main
lemma we need. For this purpose, the following definition will be useful.

Definition 1.3. Let A be a subset of components of a link L. The restricted cusp
density of A in L, cdR(L,A), is defined to be the ratio of the maximal cusp volume
in A, denoted cvR(L,A), to the volume of the complement.

cdR(L,A) :=
cvR(L,A)

vol(L)

The results on cusp volumes for belted sums rely on finding two links L1 and L2,
one having high restricted cusp density of a single cusp and the other having low
restricted cusp density. Unfortunately, finding suitable links with restricted cusp
density greater than .6826 . . . has so far been unsuccessful. It is the only obstacle to
showing that cusp densities of knots are dense in a larger interval than [0, .6826 . . . ].
It remains an open question as to whether there exists a sequence of knots with cusp
densities approaching 0.853 . . . .

In Section 3 we define and study a new link invariant which we call cusp crossing
density. The invariant volume density, dvol(L), which is the ratio of the volume to
the crossing number, has been considered in [6], [8], [9], and [10]. Volume densities of
all hyperbolic knot and link complements lie in [0, 3.6638 . . . ] and are dense in that
interval. One crucial motivation for studying volume density has been to explore
interesting relations with the determinant density for knots, which is defined to be

ddet(K) =
2π ln(det(K))

c(K)

This is a combinatorial invariant of knots that is dense in the same interval [0, 3.6638 . . . ].
We define cusp crossing density analogously to volume density.

Definition 1.4. Let L be a hyperbolic link in S3 and c(L) denote its crossing number.
The cusp crossing density, dcc(L) is defined as
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dcc(L) :=
cv(L)

c(L)

We look at bounds for cusp crossing density. Previously, in [4], it was proved that
for any knot K, cv(K) ≤ 9c

2
(1− 1/c)2. Hence dcc(K) < 4.5.

We show that in fact, cusp crossing densities for hyperbolic knots and links are
bounded above by 3.1263 . . . . We then obtain several families of links with cusp
crossing density approaching 3 from below. We find sequences of hyperbolic knots
with cusp crossing density as high as 1.706. We also show that cusp crossing density
for hyperbolic two-component links is dense in the interval [0, 1.6923 . . . ] and cusp
crossing density for all hyperbolic links is dense in the interval [0, 2.120 . . . ]. We
suspect that the actual upper bound on cusp crossing density for links is 3 and that
cusp crossing densities of links are dense in the interval [0, 3].

The results in this paper would not have been possible without the opportunity to
experiment afforded by the computer program SnapPy [11]. We are very grateful to
the creators of that program.

T1
T2

(a) Link L2

T1

T2

(b) Link L3

Figure 1. A belted sum of two links

2. Cusp Density of Links

Let L be a link and A a trivial component of L bounding an incompressible
n−punctured disk. Consider a projection of L such that n strands pass through
the disk bounded by A (see Figure 2).

Figure 2. (1,1)-Dehn filling on trivial component
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Remark 2.1. A (1, p)-Dehn filling on component A gives the complement of the link
L′ obtained from L by removing A and adding p full twists to the n strands that
passed through it, as shown in Figure 2.

Definition 2.2. Let A be a subset of components of link L, such that all components
of A are trivial and any pair of components in A form either the Hopf link or the
unlink. Define the graph G with the components in A as vertices and edges between
pairs of components that are linked. We will call A a chain of shape G in L.

Lemma 2.3. Let L be a link in S3 of at least m+ 1 components containing a chain
A = {A1, A2, . . . , Am} of shape G. If G has no cycles, then the manifold obtained by
(1, pi)-Dehn filling each of the components Ai in L remains a link complement.

Proof. If G has no cycles, then it can be considered as a union of finitely many
disconnected trees. If G consists of finitely many trees, each with n or fewer edges,
then induction on n will show that (1, p)-Dehn filling the components in A yields a
link complement.

If n = 0 then G has only isolated vertices, so none of the components of A are
linked with each other. This implies that they can then be filled one by one to get a
link complement, and the twists from each filling in the resulting link will be isolated
and not affect each other.

Now assume the lemma holds when all trees have less than or equal to n− 1 edges,
and let the trees of G have n or fewer edges. For each nontrivial tree in G, choose a leaf
vertex of the tree. Each corresponding component is only linked with the component
that is its parent in its tree and possibly some components of L that are not in A.

As shown in Figure 2, (1, pi)-Dehn filling on one of the leaf components Ai gives pi
full twists to the strands passing through the disk it bounds, but its parent component
Aj, which only passes through the disk once, remains trivial and all other components
in A are unaffected. The Dehn filling for Aj becomes a (1, pj + pi)-Dehn filling. By
induction, filling on the remaining components will result in a link complement. �

Theorem 2.4. The set of all cusp densities for hyperbolic link complements in S3 is
dense in the interval [0, 0.853 . . . ].

Proof. In [3], it was proved that the set of cusp densities of hyperbolic manifolds
is dense in the interval [0, 0.853 . . . ] by constructing manifolds with cusp density
arbitrarily close to any value in the interval. A manifold with cusp density arbitrarily
close to x ∈ [0, 0.853 . . . ] is constructed by first finding a link complement Fk,n,m with
restricted cusp density arbitrarily close to x, where restricted cusp density is the ratio
of the cusp volume of a subset C of the components to the volume of the manifold.
When all components of the link except for those in C are (1, p)-Dehn filled, where
p can be chosen to be arbitrarily large, the volume and cusp volume of the resulting
manifold approach the volume and restricted cusp volume of the original manifold,
respectively. The resulting manifold then has cusp density arbitrarily close to x.

It remains to be shown that the manifolds obtained by this construction are in fact
link complements. Let Dn be the n−component alternating daisy chain with even
n > 4, and let C0 = {C1, C2, C3, C4} be a set of 4 cusps in Dn such that C1, C2, C3 are
adjacent and C4 is opposite C2. Let Dn,m be the link obtained by taking an m−fold
cyclic cover of Dn around C4, and let C1 be the set of cusps in Dn,m that cover those
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in C0. Fk,n,m is the belted sum of Dn,m and Lk, a k−fold cover of a link obtained by
taking covers of the minimally twisted 5-chain, where the belt in Dn,m is a component
covering C2. Let C be the union of C1 and the set of all cusps in Lk.

Figure 3. The link Dn,m.

As shown in Figure 3, the components of Fk,n,m in the complement of C, all of
which lie in Dn,m (appearing in blue), form a chain of shape G, where G consists of
two disjoint trees, which of course contain no cycles. By Lemma 2.3, the manifold
obtained by (1, p)-Dehn filling on the components not in C is a link complement. �

3. Cusp Density of Knots

Definition 3.1. Consider a link with two components, the first containing a tangle
T which does not create additional components, and the second a trivial component
that wraps around two strands of the component containing T , as shown in Figure 4.
We call such a link an augmented tangle link. When the tangle specifically has an X
in it in the sense that the two strands labeled a are connected to one another through
the tangle, and the two strands labeled b are connected to one another through the
tangle, then we say that the link is an augmented cross tangle link.

T
a b

b a

2

1

Figure 4. Augmented cross tangle link.

Note the twice-punctured disc bounded by cusp 2 in the complement of an aug-
mented tangle link. A thrice-punctured sphere (or twice-punctured disk) is known
to be totally geodesic and to have a unique hyperbolic structure (see for instance
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1 2
P QA

(a) Cross section along cusp 2

A B=A

1 1

2 2

P PQ

 

m m/22/m

(b) Horoball Diagram

Figure 5. Twice punctured disc

[1]).The disk appears in Figure 5(a) with certain edges marked. In Figure 5(b), we
look at the cusp diagram, centering the horoball of cusp 2 at infinity. The following
description of the twice punctured disc in the cusp diagram is crucial to our proofs.

We center the fundamental domain such that an endpoint of the longitude is directly
above the horoball of Cusp 1 that corresponds to the puncture P . There will be an
identical ball on the ‘other’ end since they are identified. We have a second puncture
Q in the twice-punctured disc and this would correspond to another horoball of Cusp
1 between the two horoballs at the ends of the longitude. This will be equidistant
from the two horoballs centered at P since the geodesic (2) corresponding to PQ
should be the same when constructed from either ideal vertex corresponding to P .
The edge 1 in Figure 5(b) appears as a geodesic connecting P and infinity.

On the leftmost horoball, the distance along the boundary cut off by the geodesics
1 and 2 is half the meridian (the other half is on the rightmost horoball). We also see
the meridian as the distance cut off by the two geodesics labeled 2 along the boundary
of the middle horoball. Since the meridian is constant along the whole length of cusp
1, all three horoballs are the same size.

In order to find the interval in which cusp density is dense for knots we must first
discuss poking and its implications for our constructions.

Definition 3.2. Given a thrice-punctured sphere S in a hyperbolic 3-manifold M ,
we say that a cusp C pokes S if, in the universal cover H3, there is a horoball H
corresponding to C and a geodesic plane P that covers S such that the center of H
is not on ∂P , but H intersects P . See Figure 6.

We say an augmented tangle link has poking if the cusp containing the tangle pokes
the twice-punctured disk corresponding to the trivial component.

Remark 3.3. Poking has not been encountered in any augmented tangle link we
have considered. We wonder whether poking ever occurs for augmented tangle links.
For the following constructions we assume its absence.

Lemma 3.4. Let L1 and L2 be two augmented cross tangle links, both without poking,
and let L3 be their belted sum. Let C1, C2 and C3 be the tangle components of each
link. Choose m1, m2 and m3 to be the meridian lengths of C1, C2 and C3 when they
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H

P

Figure 6. Horoball Diagram: Poking across twice-punctured disk

are maximized first in their respective link complements and let VC1, VC2, and VC3

be their volumes. Then if m1 ≤ m2, it must be that m3 = m1 and furthermore,

VC3 = VC1 +
(

m1

m2

)2

VC2 .

Proof. As in [1], a fundamental domain for the hyperbolic structure on L3 in H3 is
obtained by gluing together fundamental domains for L1 and L2 along geodesic faces
corresponding to the twice-punctured disks bounded by the trivial component in each.
These disks are totally geodesic. Let P be a geodesic plane in H3 corresponding to
he twice-punctured disks, once glued together. The relative positions of the centers
of horoballs in the fundamental domains for L1 and L2 are preserved. The cusp C3

and the horoballs corresponding to it will come from the cusps C1 and C2 and the
horoballs corresponding to them, but the sizes of the horoballs from C1 and C2 may
need to be adjusted to match accordingly.

Both C1 and C2 are maximal cusps in L1 and L2. Because there is no poking, there
are no pairs of horoballs with centers on opposite sides of P that touch one another.

The centers of horoballs that are on the boundary of P are now shared between
the fundamental domains of L1 and L2, as they come from C1 being glued to C2 on
the twice-punctured disk. The cusps are glued to each other in a way that takes a
meridian on the twice punctured disk in C1 to a meridian on the twice punctured
disk of C2. Note that neither m1 nor m2 can be made any larger when they appear
in L3 since horoballs that do not poke across the twice-punctured disk touch one
another in the fundamental domains for L1 and L2 that we are using to construct the
fundamental domain for L3. It follows that the meridian m3 of C3 cannot be larger
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than either m1 or m2. As we assumed that m1 ≤ m2,we must shrink the cusp C2

back until its meridian matches with m1, and this means that m3 = m1.
This implies that the part of C3 that corresponds to C2 from before is the same

except with the meridian scaled down by a factor of m1

m2
. Since the cusp shape is similar

to before, the longitude is also scaled down by a factor of m1

m2
. Therefore, as the cusp

volume is directly proportional to cusp area, the new cusp volume corresponding to

the C2 part of C3 is scaled down by
(
m1

m2

)2
and so is equal to

(
m1

m2

)2
VC2 . As the

meridian of C1 is unchanged under the gluing, the cusp volume of the part of C3

corresponding to C1 remains the same. Therefore, as C3 is just the union of the parts

corresponding to C1 and C2, we have that VC3 = VC1 +
(
m1

m2

)2
VC2 . �

Lemma 3.5. Let L1 and L2 be augmented cross tangle links with no poking and tangle
components C1 and C2 of respective restricted cusp density cd1 and cd2 and meridians
of lengths m1 and m2 where m1 ≤ m2. Then the cusp densities of knot complements

are dense in [cd1,
(
m1

m2

)2
cd2] if cd1 ≤

(
m1

m2

)2
cd2, or in [

(
m1

m2

)2
cd2, cd1] if

(
m1

m2

)2
cd2 < cd1.

Proof. Let Lk,p be the link that results from taking a belted sum of k copies of L1 and
p copies of L2. Let Ck,p be its tangle component and let cdCk,p

be its restricted cusp
density. Note that when k + p is odd then Lk,p is a two component link where one of
the components bounds the twice-punctured disk.Then there exists a knot with cusp
density arbitrarily close to cdCk,p

that is obtained by doing high (1, p)-Dehn filling on
the trivial component of Lk,p.

We will assume to begin that cd1 ≤
(
m1

m2

)2
cd2. Now, for k, p ≥ 1, Lk,p will have

mk,p = m1 since m1 is the smallest of all the meridians of the belted sum components.

Therefore, all p of the L2 components of the belted sum will add volume
(
m1

m2

)2
VC2

to VCk,p
. Additionally, all k copies of L1 will add volume VC1 to VCk,p

. Thus, VCk,p
=

kVC1 + p
(
m1

m2

)2
VC2 . As volumes add under belted sums, the restricted cusp density is

given by:

cdCk,p
=

kVC1 + p
(
m1

m2

)2
VC2

k · vol(L1) + p · vol(L2)
.

Divide by k in the numerator and denominator, and let t = p
k

to obtain:

f(t) =
VC1 + t

(
m1

m2

)2
VC2

vol(L1) + t · vol(L2)
.

Then lim
t→∞

f(t) =

(
m1
m2

)2

VC1

vol(L2)
=

(
m1

m2

)2
cd2, and lim

t→0
f(t) =

VC1

vol(L1)
= cd1. Additionally as

f(t) is a continuous function of t, it takes on all values in [c1,
(
m1

m2

)2
c2] . As k and p

are integers, for any value of t we can find a k and a p such that k
p

is arbitrarily close

to t, and furthermore we can do so such that k + p is odd. As a knot can approach

any of these values, the cusp densities of knots are dense in [c1,
(
m1

m2

)2
c2].

When
(
m1

m2

)2
c2 < c1, a similar argument holds to show knot cusp densities are dense

in the interval [
(
m1

m2

)2
c2, c1]. �

Now we would like to find two links satisfying the conditions of Lemma 3.5 that give
the largest interval in which cusp densities are dense. Just as good for our purposes,
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we will instead find two families of augmented cross tangle links with no poking that
each have meridians of the tangle component approaching 2, and have restricted cusp
densities approaching 0 and .6826 . . . respectively.

In order to describe the family of augmented cross tangles with no poking that have
restricted cusp density approaching 0, we utilize the alternating daisy chains. Denote
such a chain with n components Dn. Let Mn denote a choice of a single cusp, indi-
vidually maximized in Dn. As shown in [3], as n approaches infinity, Mn approaches
the maximized cusp of the Borromean rings in structure. This means that the merid-
ian mn of Mn approaches 2 and the restricted maximized cusp volume cvR(Dn,Mn)
approaches 4. Additionally, as n approaches infinity, vol(Dn) approaches infinity,
and so cdR(Dn,Mn) approaches 0. Additionally, as Mn approaches in structure the
Borromean rings maximized cusp, and as the Borromean rings have no poking, for
sufficiently large n, neither will Mn.

Now, let Dn,p be the manifold that comes from performing (1, p)-Dehn filling on
every component of Dn except for Mn and the two components of Dn that are ad-
jacent to and linked with Mn. Let Mn,p be the component from the new manifold
corresponding to Mn. As p approaches infinity, Dn,p will approach Dn in volume,
and the three cusps Mn,p and the two surrounding cusps will approach their previous
volumes and structures before filling. By Lemma 2.3, we know that Dn,p is a link
complement. Specifically Dn,p will have three cusps and since the component Mn,p is
not Dehn filled and neither are the surrounding two components, Mn,p will remain a
trivial component that bounds a twice-punctured disk.

Now for sufficiently large n and p, Mn,p will have no poking as it approaches in
structure Mn, and therefore we can insert a half-twist through the twice-punctured
disk bounded by Mn,p that connects the other two cusps, but otherwise does not
change any cusp structure but to unify the previous two cusps assuming we are in the
case with no poking. Call this new two-component link Ln,p, and note that now Ln,p

is in augmented cross tangle form. Additionally, it is still maintained that as n and p
approach infinity, the restricted cusp density of Ln,p for both components approaches
0, and additionally, for sufficiently high n and p, Ln,p has no poking. Discard all Ln,p

that possibly have poking, and call this remaining family of augmented cross tangles
with restricted cusp density approaching 0 and no poking F1.

To construct the family with high cusp density, start with the maximally twisted
four chain. The complement of the maximally twisted four chain is composed of ten
ideal regular tetrahedron and so it has volume 10.149 · · · = 10vtet. Depending on

the order of maximization, opposite cusps have volumes of 2
√

3 and
√
3
2

respectively.
Additionally the meridian of the first maximized components is exactly 2. Then,
insert a half-twist through one of the twice punctured disks in order to connect the
two cusps that each have a volume of 2

√
3. The resulting link complement will still be

made out of ten ideal regular tetrahedron and the cusps will be unchanged except that
the two previous opposite cusps are joined so that they are a single cusp with volume
2
√

3 + 2
√

3 = 4
√

3 and this larger component still has a meridian of 2. Therefore the
restricted cusp density of the largest component after inserting a half-twist is equal

to 4
√
3

10vtet
= .6826 . . . .
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Now perform (1, p)-Dehn filling on the trivial component opposite the one we put
a half-twist through in order to obtain links that have restricted cusp densities ap-
proaching .6826 . . . , and meridians of the tangle component approaching 2. Note that
all such Dehn fillings are exactly the family of augmented cross tangle links that we
desire. Additionally, for a high enough p, all links in the family that come from (1, p)-
Dehn filling will have no poking as they approach having a perfect wall of full-sized
balls along the twice-punctured disk component because they approach a manifold
made only from ideal regular tetrahedra with the maximum ball packing allowed in
hyperbolic space. Call this family of links F2.

Theorem 3.6. Cusp densities of knots are dense in [0, 0.6826 . . . ].

Proof. There exist links l1 ∈ F1 and l2 ∈ F2 arbitrarily close in cusp density to 0 and
.6826 . . . respectively, and both families consist of links that satisfy the conditions of
Lemma 3.5. Therefore cusp densities of knots are dense in [0, .6826 . . . ]. �

4. Cusp Crossing Density

In this section we consider cusp crossing density of hyperbolic links, given as the
ratio of maximum cusp volume to crossing number.

Lemma 4.1. The cusp crossing densities of hyperbolic knots and links are bounded

above by
√
3voct
2vtet

≈ 3.1263 . . . and there exist families of knots with cusp crossing density
approaching 0.

Proof. By definition 0 < dcc(L). We find a family of knots with cusp crossing density
approaching 0. Consider the Whitehead link. Performing (1, q)-Dehn filling on one
component results in the twist knot family, Twq, where crossing number is 2q + 2.
By Thurston’s Hyperbolic Dehn Filling Theorem (cf. [16]), as q becomes sufficiently
large, the cusp volumes of the twist knots approach that of one component of the

Whitehead link. Thus lim
q→∞

dcc(Twq) = lim
q→∞

cv(Twq)

c(Twq)
= 0.

→

Figure 7. The Whitehead link Dehn fills to become the twist knot family.

We obtain our upper bound from previous results about packing and cusp density.

Recall that the densest packing of horoballs in hyperbolic space is
√
3

2vtet
≈ .853.

Thus cv(L)
vol(L)

≤ .853 . . . . Since volume density is bounded above by voct (which follows
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A A

k

n

k

n

Figure 8. Link families with cusp crossing density approaching 3 from
below.

from a result of D. Thurston, see [5] for an explanation), vol(L)
c(L)

≤ voct. Therefore, for

any hyperbolic link L,

dcc(L) =
cv(L)voct
c(L)voct

≤ cv(L)

vol(L)
voct ≤ (.853 . . . )(voct) ≈ 3.1263.

�

Lemma 4.2. There exists families of links with cusp crossing density approaching 3
from below.

Proof. Consider the two link families L(n, k) and L′(n, k) appearing in Figure 8.
Ignoring component A, the link diagrams are to be alternating. If not for the presence
of the component labelled A, the link complements L(n, k) and and L′(n, k) could be
decomposed, using face-centered bipyramids as in [5] into 2n(k − 1) octahedra and
two 2n-bipyramids for the innermost and outermost faces. All of these bipyramids
have two ideal vertices at top and bottom while all the vertices around their equators
are finite. The finite vertices are identified into two vertex classes, one we call U ,
which is the up vertex above the projection plane and one we call D, which is the
down vertex below the projection plane. At crossings that do not involve bigons,
there are three edge classes, one from D to the bottom of the lower strand, one from
the top of the lower strand to the bottom of the upper strand, and one from the top
of the upper strand to U .

For crossings that do not touch a bigon, there are four edges in each of the three
edge class corresponding to the crossing, one on each of the four octahedra meeting
at this crossing.

We now consider crossings that do touch a bigon. The edges spanning the two
crossings on the bigon are isotopic to one another and so they occur in the same
edge class. This edge class appears twice on adjacent edges on the equator of the
octahedron coming from the square that shares an edge with the bigon, and once
each on the adjacent octahedra (appearing as edge class 1 in Figure 9). However,
there are currently other edge classes that do not contain four edges.
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Figure 9. Component A collapses the 2n-bipyramids and identifies
edge classes to have four edges in each.

As in [5], the addition of the A component, which passes through both D and U ,
skewers the inner and outer bipyramids and collapses them down to polygons. It also
makes all of the finite vertices of the octahedra into ideal vertices. The identification
of the edges on the top of the two collapsed bipyramids with the edges on the bottom
(edge class 4 with 6, 5 with 2 and 3 with 7 in Figure 9) ensures that all edge classes
now consist of four edges each. For instance, after these identifications, edge class 2
appears twice on the middle octahedron and once each on the other two octahedra.
Edge class 4 will appear twice on the upper left octahedron, once on the middle octa-
hedron and once more on an octahedron further to the upper left and not appearing
in this figure.

Thus, by taking all ideal regular octahedra, all of which have all dihedral angles
of π/2, we satisfy all of the gluing equations of Thurston including the completeness
equations, since the boundary of the cusps are made up of equal sized squares. We
therefore obtain the unique hyperbolic structure on the complement, with a volume
of 2n(k − 1)voct.

If we choose the standard packing of horoballs for this collection of octahedra,
meaning the three horoballs that correspond to the vertices of a triangular face are
all pairwise tangent, then they together form a valid set of cusps since the gluings
on the faces respect this packing. (See Figure 10.) They produce a volume of 3 in
each octahedron, 1/2 from each vertex. If the maximal cusp volume of the manifold
corresponds to this packing, then the maximal cusp volume will be 3(2n(k − 1)) =
6n(k − 1).
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1

1

 

Figure 10. Standard packing of horoballs for an ideal regular octa-
hedron seen from the side and from above.

Momentarily ignoring component A, the crossing number for such a link must be
2nk since this is an alternating link. Since the component Amust link each of k or k+1
of the components, we have that c(L(n, k)) = 2nk+2k and c(L′(n, k)) = 2nk+2k+2.

Therefore:

dcc(L(n, k)) =
6n(k − 1)

2nk + 2k
and dcc(L

′(n, k)) =
6n(k − 1)

2nk + 2k + 2
.

As k and n approach∞, these both approach 3 from below, as we wanted to show.
So, to complete the proof, we must show that there is no other choice of cusps

that could generate a higher cusp volume than the choice that yields the standard
packing. Any other choice can be obtained by increasing the size of certain cusps and
decreasing sizes of cusps that touch them, starting from the standard packing. Note
that if there are n cusps, a maximal cusp volume must achieve at least n points of
tangency (cf.[14]).In order to obtain a higher volume in the set of cusps, at least one
of the cusps must be expanded. There are three cases.

Suppose a cusp has two horoballs with centers that are adjacent vertices on one
of the octahedra. Then it cannot be expanded as it is already touching itself in
the standard packing. Suppose a cusp has two horoballs in one octahedron such
that they are at opposite vertices. Then expanding this cusp forces all of the cusps
corresponding to the other vertices to shrink and it shrinks total volume until the
horoballs at the opposite vertices touch at the center of the octahedron. There the
volume in the octahedron is 1 for each of these horoballs, while the remaining four
horoballs have been shrunk down to size 1/4. However, the total cusp volume has
bottomed out and come up again to 3. See p.13-15 of [12] for details.

In the last case, there is a cusp C such that in each octahedron, at most one
vertex corresponds to it. However, in the case of our link complements, if we take
one of the octahedra H1 to have vertex at ∞ corresponding to C, there is a second
octahedron glued to one of the bottom faces of the octahedron, placing a C vertex
directly beneath the center of a vertical face of H1. In other words, there are two faces
on two octahedra such that those faces share an edge, they are in a totally geodesic
plane and such that their opposite vertices both correspond to C.
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So when we expand C, the horoballs at these vertices will bump into one another
along that shared edge. This will prevent the horizontal horosphere corresponding to
the C vertex at ∞ from expanding down past the equatorial edges of H1. In fact,
when it reaches those edges, it will be tangent to all of them. Since these edges peak
at a height of 1/2, the volume in this horoball in H1 will be 2. Each of the four
vertices on the equator will have horoballs with volume 1/8, and the horoball at the
center vertex in the boundary plane will have volume 1/2. So once again, the cusp
volume in this octahedron is at most 3. So there is no gain in total cusp volume. See
p. 13-15 of [12] for details in this case as well.

Thus, in all cases, there cannot be a choice of cusps that generates more total
volume in the cusps than the standard packing.

�

Remark 4.3. A family of knots with notably high cusp crossing densities is the
weaving knots described by Champanerkar, Kofman, and Purcell[9]. They define the
weaving knots as alternating versions of the standard projections of the (p, q)-torus
knot or link and denote them W (p, q). Up through knots of 14 crossings, they have
the highest cusp crossing density. These knots are useful because, as described in [10],
as p and q go to infinity, their volume densities limit to the volume density of the
infinite square weave, which is the maximum possible, voct = 3.6638 . . . . Utilizing the
D. Thurston decomposition of link complements via one octahedron at each crossing,
in the case of the weaving knots, these octahedra limit to regular octahedra as the
weaving knots grow towards the infinite square weave. This raises volume density.
Since dcc(K) ≤ dvol(K)voct, this suggests the possibility of higher cusp crossing density
values. Figure 11 shows weaving knot W (10, 11). Although the largest weaving
knot that we have input that does not crash SnapPy is W (10, 11), one can do the
following to get higher cusp crossing densities for knots. Take weaving knot W (p, q),
and construct a 2-component link W ′(p, q) with first component C1 corresponding to
W (p, q) and second component C2 obtained by adding a trivial component through
the center hole linking around the entire projection. Then the cusp crossing density of
C1 in W ′(p, q) is equal to the limit of the cusp crossing density of W (n, q) as n→∞.
Moreover, since W ′(p, q) is a p-fold cover of the link W ′(1, q), its first cusp has the
same cusp crossing density as does the first cusp of W ′(p, q). Hence, we can find the
cusp crossing density of W (′1, q), and there will be knots of the form W (n, q) with
cusp crossing densities approaching this number. Using SnapPy, we have found that
dcc(W (n, 26)) approaches 1.706 as n→∞. So there do exist knots with cusp crossing
density approaching this number.

Question 4.4. Do the weaving knots have the highest cusp crossing density of all
knots, i.e. for any knot, is there a weaving knot that has a higher cusp crossing
density?

Consider an augmented cross tangle link as in Figure 4, such that the tangle is
alternating. Let d = V1+V2

c−4 , where V1 is the restricted cusp volume of the cusp
containing the tangle, which has been maximized first, and V2 is the cusp volume
of the cusp containing the trivial component maximized relative to the cusp of the
component containing T , and c is the crossing number of L.
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Figure 11. Weaving knot W (10, 11) (SnapPy)

Lemma 4.5. Cusp crossing densities of two component links are dense in the interval
[0, d].

T T T

m-twists

n-copies

Figure 12. n-fold cover followed by (1,m) surgery

Proof. We take an n-fold cyclic cover (where n is odd) with respect to the trivial
component. Since n is odd, the resulting link is still an augmented knot. The initial
cusp volume V is the sum of V1 and V2. The n-fold cover results in a link with
cusp volume n(V1 + V2) and the crossing number becomes n(c − 4) + 4. Cutting
along the twice punctured disk bounded by the trivial component and twisting m
full twists increases the crossing number by 2m while the link complement remains
homeomorphic to that of before. The resulting link J(n,m) has cusp crossing density:

dcc(J(n,m)) =
n(V1 + V2)

n(c− 4) + 4 + 2m
=

n
m

(V1 + V2)
n
m

(c− 4) + 4
m

+ 2
.

As m becomes arbitrarily large with respect to n, the cusp crossing density ap-
proaches 0. If n becomes arbitrarily large relative to m, the cusp crossing density
approaches d.
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Define

f(t) =
t(V1 + V2)

t(c− 4) + 2
.

Then since f is continuous and can approach both 0 and d, for every y ∈ (0, d), there
exists a t such that f(t) = y.

We can choose n
m

to be arbitrarily close to t in such a way that n is odd and m is
arbitrarily large, thereby giving cusp crossing density arbitrarily close to y = f(t) for
the resulting link. Therefore the cusp crossing densities of two-component links are
dense in the interval [0, d]. �

We may now find links suitable for the lemma above in order to give specific bounds
for intervals of density of cusp crossing density.

Theorem 4.6. Cusp crossing density for two component links is dense in the interval
[0, 1.6923 . . . ].

Proof. Consider the weaving knotW (10, 11) with an added trivial component wrapped
around its two outermost strands. The result is hyperbolic by [2].Using the program
SnapPy [11] to calculate V1 and V2 we find that d = V1+V2

c−4 = 1.6923. We may then
apply Lemma 4.4 to obtain the result. �

Theorem 4.7. Cusp crossing density for links is dense in the interval [0, 2.120 . . . ].

Proof. Take the left link L(7, 8) from Figure 8. Add a trivial component that forms
the boundary of a twice-punctured disk that is punctured by the two outermost
concentric components. According to SnapPy, the resulting link has volume 356.69 . . .
and cusp volume of 267.1551, not including the cusp volume of the added component.
Excluding the added component, the number of crossings is 126. Then, as in the proof
of Lemma 4.5, by taking covers and surgeries on the added component, we can show
that cusp densities of links are dense in the interval [0,2.120. . . ]. �
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